
Melodic Morphing Algorithm in Formalism

Keiji Hirata1, Satoshi Tojo2, and Masatoshi Hamanaka3

1 NTT/Future University Hakodate
2 Japan Advanced Iinstitute of Science and Technology

3 PREST, JST/University of Tsukuba

Abstract. We introduce a feature structure, corresponding to a time-
span tree based on ‘A Generative Theory of Tonal Music’ (GTTM) for a
music piece, and represent the reduction of the tree by the subsumption
among these feature structures. As the collection of them forms a lattice,
we can define the join and meet operations. We show a melodic morphing
algorithm based on these simple operations.

1 Introduction

To facilitate composing music, we often render a pitch event, a chord, and so on
in a formal representation, together with supporting tools. However, there exists
a trade-off between descriptive power and simplicity in the formal representation,
two of which are basically incompatible. Descriptive power is the capability as
to how faithfully the composer’s original thoughts and emotions are expressed.
On the other hand, simplicity means how concise the description of the music is.
In general, the more abstract a description is, the shorter it is, and the less the
product of writing and reading costs is. For instance, a Standard MIDI File has
high descriptive power yet low simplicity, while the chord symbol is the opposite.
The trade-off can also be considered an issue of controllability in rendering music.

We argue that the key for being compatible is to separate the basic well-
understood operations from creator’s intention for combining them. Intuitively,
these basic operations include the ones like set arithmetics; addition, subtraction,
intersection, and union. Thus we are led to an algebraic framework, in which a
creator assembles basic operations into a calculation process for a target task as
the creator intends.

The aim of the paper is to prepare the theoretical foundations for proving
the theorem for the property of a complicated musical task, melodic morphing.
We start with defining the subsumption relation among melodies and building a
lattice of feature structures, each element of which corresponds to a melody. Us-
ing the join and meet operations in the lattice, we construct a melodic morphing
algorithm in the formal way.

2 Time-Span Trees in Feature Structures

First, we design the feature structure, f-structure hereafter, for a time-span tree
of a music piece. An f-structure is a directed acyclic graph as used in [?]. Since



2 Keiji Hirata, Satoshi Tojo, and Masatoshi Hamanaka



t̃ree

head {{ i , j },
[
ẽvent

]
}

dtrs {


left

 t̃ree

head i
[

ẽvent
]

dtrs {· · ·}


right

 t̃ree

head j
[

ẽvent
]

dtrs {· · ·}




,⊥}




ẽvent
pitch P itch

pos

[
bar Integer
meter Length

]
duration Length



Fig. 1. Feature structures for a time-span tree (left) and a pitch event (right)

the reduction is an intrinsic method to reflect musical structures [?], we can
properly map the reduction of the time-span trees to the subsumption relation
‘⊑’ between f-structures.

The type of an f-structure is shown headed by ‘̃ ’ (tilde). An f-structure for
a t̃ree is shown on the left-hand side of Fig. ??, and that for an ẽvent on
the right-hand side. A binary tree has left and right branches where there are
trees recursively; we call these branches daughters (dtrs). Let σ be a t̃ree f-
structure, then the left daughter and the right daughter, denoted by σ.dtrs.left
and σ.dtrs.right respectively, have recursively t̃ree type. The set notation {x, y}
means the choice either of x or y. When σ.dtrs is ⊥ (empty), that is, there is no
daughter in the tree, σ.head must be a single pitch event.

The whole f-structure is referred to by a tag, which is shown by such a boxed

number as i or j . The head of a t̃ree f-structure must be either the head

of its left daughter tagged by i , that of its right daughter tagged by j , or

another single pitch event. If σ.head = σ.dtrs.left .head, the node has the right-
hand elaboration of shape , and if σ.head = σ.dtrs.right.head, the left-hand
elaboration . As such, the head value at the parent level is recursively taken
from either the left-hand or right-hand branch. As for ẽvent type, feature pitch
include C4, B♭6, F♯3, and so on. Feature pos stands for the start timing, and
its value is an f-structure consists of feature bar (the n-th bar) and meter (m-th
meter measured by a quarter note). Feature duration also has a Length value.

A type of an f-structure specifies a set of indispensable features. When no
indispensable feature is missing, the typed f-structure is said to be full-fledged.
For example, t̃ree type requires the feature set of head and dtrs, and ẽvent
type does pitch, pos.bar, pos.meter, and duration. The property ‘full-fledged’ is
concerned with whether or not rendering a real melody from a f-structure rep-
resentation. Then, we can provide the formal definition of subsumption relation
between f-structures, which allows the mechanical calculation.

3 Calculus in Melody Lattice

Theorem 3.13 in Carpenter [?] defines that the unification of f-structures A and
B is the least upper bound of A and B. Therefore, we adopt the unification as the



Melodic Morphing Algorithm in Formalism 3

definition of join in this paper, and the intersection of the unifiable f-structures
as that of meet.

Definition 1 (Meet and Join). Let A and B be full-fledged f-structures rep-
resenting the time-span trees of melodies A and B, respectively.

If we can fix the greatest lower bound of A and B, that is, the greatest x such
that x ⊑ A and x ⊑ B is unique, we call such x the meet of A and B, denoted
as A ⊓B.

If we can fix the least upper bound of A and B, that is, the least y such that
A ⊑ y and B ⊑ y is unique, we call such y the join of A and B, denoted as
A ⊔B.

Definition 2 (Reduction Path). Suppose that each pitch event is given a beat
strength as a result of metrical analysis [?]. For such two f-structures (melodies)
A and B that TB ⊑ TA, a reduction path from A to B is defined as a sequence
of f-structures (melodies) obtained by removing a pitch event (a note) in A \ B
from A one-by-one, according to the algorithm, as follows:

Step 1: N := #(TA \ TB), i := 0, and T0 := TA.
Step 2: Select a pitch event p of the minimum beat strength in Ti \ TB.
Step 3: Reduce Ti to Ti+1 by removing p.
Step 4: Iterate Steps 2 and 3 N times (i = 0 ∼ N − 1).

The resulting sequence T0, T1, T2, · · ·, TN is the reduction path from A to B.

Note that at Step 2 the pitch events (notes) with the minimum beat strength
are the least important notes in the time-span tree. Since such least impor-
tant notes are multiple and one is chosen from them nondeterministically, there
are more than one reduction path in general. The selection is justified by the
time-span reduction preference rules: TSRPR1 (metrical position) and TSRPR5
(metrical stability) [?]. Hence the algorithm may automatically compute more
than one reduction paths, for every melody C on the reduction path from A to
B, B ⊑

/
C ⊑

/
A holds.

4 Melodic Morphing Algorithm

Here, we present the morphing algorithm in the formal way[?,?].

Definition 3 (Melodic Morphing Algorithm). The algorithm consists of
the following steps (Figure ??):

Step 1: Calculate TA ⊓ TB (meet).
Step 2: Select melody TC on the reduction path from TA to TA ⊓ TB, and

select TD on the reduction path from TB to TA ⊓ TB.
Step 3: Calculate TC ⊔ TD (join), and the result is morphing melody µ.

If C close to TA is chosen, the characters of melody A are reflected in output µ.
On the other hand, If C close to TA⊓TB is chosen, those of A are less emphasized
in µ. The character of D, as opposed to B, behaves in the similar way.



4 Keiji Hirata, Satoshi Tojo, and Masatoshi Hamanaka

Melody A TA Melody B TB

TA TBExtracted common part

Partially reduced melody
TC

Morphing melody µTC TD
TDMelodyC MelodyD

Fig. 2. Melodic morphing algorithm

5 Conclusion

We have provided an algebraic framework in which a music piece is represented
by an f-structure, corresponding to its time-span tree. As these f-structures were
ordered in terms of the subsumption relation, we could construct a lattice of
melodies and could define join and meet operations. We have presented a mor-
phing algorithm, which is a complicated calculation in general, from combina-
tions of these simple algebraic operations. In the near future, we will prove the
algorithm is exactly the interpolation of two given melodies.

References

1. Carpenter, B.: The Logic of Typed Feature Structures. Cambridge University Press
(1992)

2. Hamanaka, M., Hirata, K., Tojo, S.: Melody Morphing Method Based on GTTM.
In: Proc. of ICMC 2008, pp.155–158 (2008)

3. Hamanaka, M., Hirata, K., Tojo, S.: Melody Extrapolation in GTTM Approach. In:
ICMC 2009, pp. 89–92 (2009)

4. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. The MIT Press,
Cambridge (1983)

5. Marsden A.: Generative Structural Representation of Tonal Music. J. New Music
Research, vol. 34, no. 4, pp. 409–428 (2005)

6. Selfridge-Field, E.: Conceptual and representational issues in melodic comparison.
Computing in Musicology vol. 11, pp. 3–64, The MIT Press, Cambridge (1998)


