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Abstract. We propose structural similarity of two melodies based on
sub-trees from the time-span tree provided by the Generative Theory of
Tonal Music. The structural distance of the tree was previously defined
and called the “maximal time-span distance,” and experimental results
showed to some extent a correspondence between the maximal time-span
distance and psychological similarity. However, there is a big problem
in that almost all pairs of melodies are not similar on the basis of the
maximal time-span distance because the definition of the similarity is too
strict. Therefore, we attempt to express a melodic structural similarity by
using the coincidence rate of time-span sub-trees to weaken the condition
for calculating similarity. We have set up three experimental conditions
and compared their results.
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1 Introduction

We have been developing music analyzers based on the Generative Theory of
Tonal Music (GTTM) [1, 2]. The main advantage of analysis with GTTM is that
it can acquire a tree structure called a “time-span tree” from a score, and this
tree structure provides a method for manipulating a piece of music [3].

Before using such manipulation, we have to manually select a melody similar
to the target melody. For example, the melody morphing method [3] that gen-
erates an intermediate melody between a melody and another melody requires
similar melodies for input; otherwise, the two melodies cannot be aligned, and
then, a melody cannot be made that has the flavor from both input melodies.

If the values of similarity are not distributed appropriately, it is difficult to
represent the search or recommendation result. For example, when there are
many pieces of music for which similarity is 1.0 between query pieces, as a result
of search or recommendation, there are too many top ranking pieces, and we
need a lot of time to preview the top ranking pieces. Therefore, it is desirable
that the similarity value is appropriately distributed without duplication.It is
desirable that the obtained subjective similarity results of listening experiments
become close to similarity by calculation.



The maximal time-span distance is the sum of the lengths of time spans
that match perfectly from root to leaf and is good for measuring the similarity
between variations because these variations have a common structure [4]. How-
ever, the maximal time-span distance cannot measure the similarity between two
different melodies because they usually do not have a common structure.

To measure this similarity, we attempted to weaken the condition for match-
ing time-span trees by using the coincidence rate of time-span sub-trees. We
compare three kinds of matching conditions: tight, middle, and weak. Exper-
imental results show that the middle condition is better for the use tasks of
searching or recommendation. In the maximal time-span, similarity is calcu-
lated by using the sum of matched numbers of notes weighted by the length of
the maximal time-span. We also discuss whether this weight is proper or not by
considering the subjective similarity and similarity by calculation.

2 Maximal Time-span Similarity

The time-span tree is a binary tree and is a hierarchical structure describing the
relative structural importance of notes that differentiate the essential parts of a
melody from the ornamentation. In the tree, the essential notes are connected to
a branch nearer to the root of the tree. In contrast, the ornamentation notes are
connected to the leaves of the tree. In a separation, we hereafter call the branch
“primary” and leaf “secondary” (Fig. 1a). The time-span tree can extract an
abstracted melody by reducing ornamentation notes.

Distance between melodies before and after reduction can be expressed as
the length of the maximal time-span mi of a reduced note. Maximal time-span
mi is a sum of time spans tis of the entire notes, which are recursively connected
to the note as secondary. In Fig. 1b, note 2 is connected to note 1 as secondary.
Therefore, m2 is the same as t2, and m1 is the sum of t1 and t2. In the same way,
m3 is the sum of t3 and m1 because note 1 is connected to note 3 as secondary.

We equate melody A with its time-span tree A hereafter. The distance be-
tween A and B in Fig. 1b is the sum of maximal time-spans of reduced notes,
which we express as |B − A| The maximal time-span distance [4] between P
and Q can be expressed as the distance via meet |P − P ⊓Q|+ |Q− P ⊓Q| or
distance via join |P ⊔Q−P |+ |P ⊔Q−Q|.The meet operator P ⊓Q extracts the
largest common part or the most common information of the time-span trees
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Fig. 1. Time-span trees



in a top-down manner (Fig. 2a). The join operator P ⊔Q unites two time-span
trees in a top-down manner as long as the structures of the two time-span trees
are consistent . In fact, the distances via join and meet are the same[4]. The
distance between P and Q is maximized when P and Q do not have a common
part, which means P ⊓Q is empty ⊥ (bottom) as |P− ⊥ |+ |Q− ⊥ |.

The maximal time-span similarity is calculated by normalizing the maximal
time-span distance by dividing the maximized maximal time-span distances and
subtracting them from 1.4

1− |P − P ⊓Q|
2 · |P− ⊥ |

− |Q− P ⊓Q|
2 · |Q− ⊥ |

(1)

The maximal time-span similarity is higher when the common part of P and Q,
which can be expressed as P⊓Q, is larger. However, the condition for matching is
too strict because it compares perfectly from root to leaf through the separation
of branches. This strict matching is very good at comparing very similar melodies
such as themes and variations [4].

In comparison, the maximal time-span similarity is usually zero between two
different melodies.5 In the experiments, we use time-span trees of 300 8-bar-long
monophonic classical music in the GTTM database [5]. In fact, 32 out of 300
pieces in the GTTM database can be interpreted as two kinds of time-span trees.
Therefore, we use all the pairs of 332 time-span trees and 32 pairs of the maximal
time-span similarity that are bigger than zero.

3 Time-span Sub-trees Similarity

In the time-span tree, each note is connected to the root through the separations.
The matching of maximal time-span similarity is done by comparing all the
separations of each note that is a primary or secondary. If the primary/secondary
separation was different at some level, all the branches below the separation were
discarded as unmatched. In this sub-tree matching, we only pay attention to the
final primary/secondary separation, i.e., the separation to leaf note. From now
on, we call a pair of a primary branch and a secondary branch with no other
separation a sub-tree. Figure 2b is an example of matching in the maximal time-
span tree, where n1 is the secondary of the first separation from the root and also
the secondary of the second separation from the root, while n2 is the primary of
the first separation from the root and secondary of the second separation. Thus,
n1 and n2 are unmatched. Figure 2c is an example of matching in time-span
sub-tree similarity, where n1 is the secondary of the last separation and also the
secondary of last separation. Thus, n1 and n2 match.
4 This definition of similarity is different from general definitions such as of the Jaccard
coefficient, the Simpson coefficient, and Dice coefficient in that we independently
normalize P −P ⊓Q and Q−P ⊓Q; otherwise, only one melody is influential when
one melody has a lot of notes and the other has little numbers of notes.

5 The distance by maximal time-span has been improved in [6], however, we here omit
its detail by our limited space. We will compare this improved distance by maximal
time-span with our sub-tree similarity in future.
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Fig. 2. Examples of meet ⊓, join ⊔, and matching of nodes

The matching of maximal time-span similarity is done by comparing the
pitches of each note exactly same or not. In our sub-tree matching, we ease
the matching condition only focusing on whether two notes of the sub-trees are
ascending or descending. Thus, we can regard two sub-trees are matching only
if this ascending/descending feature is common between them. Then, we can
consider the following three patterns: (i) the pitch of the primary note is higher
than that of the secondary, (ii) the pitch of the primary note is lower than
that of the secondary, or (iii) the primary and secondary notes have the same
pitch. Now we name this classification Mp = 3. Furthermore, we can loosen the
condition, as (i’) the pitch of the primary note is higher than or equal to that of
the secondary or (ii’) the primary is lower than or equal to the secondary, and we
call this classification Mp = 2. On the contrary, we can tighten the condition; the
pitch of two primary notes must be the same when two sub-trees are matched.
We will experiment all these conditions and will compare the results.

The matching of maximal time-spans is done by comparing the onset and
length of the maximal time-spans in all separations from the root to leaf that
are exactly same. Here we pay attention to the middle point of a maximal time
span as there may exist rests at either end of the span. The relative location of
the middle points of two time-spans is named gap. The matching of time-span
sub-tree similarity is done by comparing the gap of the middle of the maximal
time-span and the length ratio of the maximal time-span in the sub-trees that
are in a certain range. In other words, if the gap of the middle of maximal time-
spans is in Mg times of the length of a piece of music and the ratio of the longer
maximal time-span and shorter maximal time-span is in Mr, the time-span sub-
trees are matching. We will change Mg to 0.1, 0.2, and 0.3 and also change Mr

to 1.1, 1.3, and 1.5, and discuss which condition is appropriate.
In maximal time-span similarity, notes close to the root branch are more

important than notes far from the root branch because the weights for calculating
maximal time-span similarity are the lengths of the maximal time-spans. In the
experiment, we compare the calculation of time-span similarity has a weight
(Mw =length of the maximal time-span) or has no weight (Mw = 1).

4 Experimental Results

The time-span sub-tree similarity proposed in Section 3 enables the condition
for matching pitch, time, the nodes of the tree, and weight for matiching to be



changed. We compare three kinds of matching conditions as follows: (a) Tight
condition, with Mp = 3, Mg = 0.1, Mr = 1.5, Mw = 1 and exactly match of
primary pitch; (b) Middle condition, withMp = 3,Mg = 0.2,Mr = 1.3,Mw = 1;
(c) Loose condition, with Mp = 2, Mg = 0.3, Mr = 1.5, Mw = 1. Figure 3 is
histograms of similarities of each matching condition from the 300 pieces in the
database. Compared with the original maximal time-span similarity, Fig. 3a is
a decrease in the number of similarities, which is zero; however, most of the
similarities are still zero, and all the similarities are under 0.5. In Fig. 3b, the
similarities were distributed in a wide area, and the shape of the distribution was
similar to the standard distribution. In comparison, the center of the distribution
of Fig. 3c leaned to the right, and very few similarities were in the area of zero
to 0.3. From the above results, (b) is appropriate in the three conditions.

We compared two kinds of weight for matching: (c) Mw = 1 and (d) Mw =
the length of maximal time-span. Here, for the values of Mp, Mg, and Mr, we
use the condition of (b). Figure 3d is a histogram of similarity made by using
the weight as (d), which has also a long distribution.

As described in 2, the 32 out of 300 pieces in the GTTM database have two
kinds of time-span trees corresponding to interpretation from musicologists. It
is preferable that each two kinds of time-span trees are similar because there
are interpretations of the same piece. We calculated the average similarity of
the 32 pieces by using the weights of (c) and (d). As a result, the average of
similarity for (c) was 0.77 and for (d) was 0.6. To compare the values from (c)
and (d), we normalized the average to 0 and variance to 1 because the average
and distribution of similarities from (c) and (d) were different. As a result of
normalization, the average similarity for (c) was 2.16 and for (d) was 2.65. These
values depend on the character of the corpus. In current 300 piece the weight
for matching is appropriately by using condition of (c) than (d).

We show some examples that show high similarities where the condition is
(b). The similarities of Fig. 4a and b was 0.90, c and d was 0.88.

5 Conclusion

Although maximal time-span similarity was previously proposed, the similarity
of two different pieces of music is usually zero. We proposed time-span sub-tree
similarity, for which similarity is made to be more than zero in many cases by
weakening the condition for matching maximal time-span similarity. In the ex-
perimental results obtained with three kinds of matching condition, the middle
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Fig. 3. Histograms of time-span sub-trees similarity
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Fig. 4. Example of Analysis

one was better than the other conditions with the GTTM database. We plan to
construct applications for similarity with the time-span tree because the appro-
priate definition of similarity depends on the application.
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