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ABSTRACT 
 
This paper describes a method for organizing onset times of 
musical notes performed along a jam-session accompaniment 
into the normalized (quantized) positions in a score.  The 
purpose of this study is to align onset times of a session 
recording to quantized positions so the performance data can be 
stored in a reusable form.  Unlike most previous beat-tracking- 
related methods focusing on predicting or estimating beat 
positions, our method deals with the problem of eliminating the 
onset-time deviations under the condition that the beat positions 
are given.  To quantize polyphonic MIDI recordings of jam 
session, we propose a method that uses hidden Markov models 
for modeling onset-time transition and deviation.  Its main 
advantage is that a player’s performance is quantized using a 
model learned statistically from session recordings of that 
player.  Experimental results show that our model performs 
better than the semi-automatic quantization in commercial 
sequencing software. 
 
Keywords: Quantization, Hidden Markov model, Recognition 
of beat and rhythm, Statistical learning 
 
 

1. INTRODUCTION 
 
We have been constructing a jam session system [1] that allows 
a human player to play interactively with virtual players, each 
of which is imitating the musical reactions of a human player.   
Each virtual player determines its intentions by using a reaction 
model that has been acquired from a human player and then 
produces a performance by connecting short phrases selected 
from a database of phrases.  Since this database was prepared 
by hand, the system could not imitate the player’s characteristic 
phrases automatically.  
 
Simply cutting out phrases at bar lines and pasting them does 
not work well (it creates unnatural performances) because the 
onset times of notes played by human players intentionally or 
unintentionally deviate from the ‘normal’ position of onset 

times in a score.  Before cutting and pasting phrases, we need 
to use a quantization method that eliminates the deviation of 
onset times and aligns them to the normalized positions1 in a 
score.  A quantization method typical of commercial 
sequencing software requires the user to specify a fixed grid 
interval, or resolution, (e.g., eighth triplet or sixteenth note) to 
which onset times are aligned, and each onset time is aligned to 
the nearest grid. This method can therefore be used only when 
the rhythm structure within a beat is fixed and known (e.g., the 
beat contains eighth triplets or the beat contains sixteenth notes).   
When the rhythm structure changes frequently, as it does in a 
jam session, we need to change the grid interval adaptively.  
 
Several quantization methods have been proposed, and one 
using a connectionist model [2] defines a potential energy that 
is stable if the ratio of a sum of onset time intervals to a sum of 
other intervals is an integer.  It is not easily applicable to 
various performances, however, because the potential energy is 
fixed.  Another quantization method for automatic 
transcription [3] and beat-tracking methods [4]-[8] focusing on 
predicting beat positions cannot be applied to our study directly, 
because their problems (estimation of beat position) are 
different from our problem (quantization of onset times 
performed along a fixed-tempo jam-session accompaniment2). 
 
On the other hand, the results of a study [8] dealing with a 
problem similar to ours indicate that the continuous speech 
recognition framework using a hidden Markov model (HMM) 
provides a useful approach to estimating tempos and beats and 
to allocating bar lines.  The method using that approach 
performs better than commercial sequencing software does, but 
it deals only with single-note performances and thus cannot be 
used to quantize the recording of a jam session that we deals 
with. 
 

 
1 Because in improvisation there is no score to follow, here the 
normalized position in a score means the position at which the player 
intended to play that note. 
 
2 Quantization of commercial sequencing software is not effective in 
this problem, because an onset time that has large deviation is aligned 
to an incorrect grid. 



In this study, we propose a method that uses the promising 
approach proposed in the study [8] and makes it possible to 
quantize polyphonic MIDI recordings of jam session by using 
our own HMM-based model. 
 
 

2. LEARNING-BASED QUANTIZATION 
 
A human player, even when repeating a given phrase on a 
MIDI-equipped instrument, rarely produces exactly the same 
sequence of onset notes because the onset times deviate 
according to performer’s actions and expressions.  We can 
model the process generating the deviation by using a 
probabilistic model. Then the problem of quantization, which 
acquires a sequence of onset times that the player intended from 
a sequence of deviating onset times that the player actually 
performed, can be considered as an inverse problem.  This 
inverse problem can be solved by using the inverse model 
derived from the model generating the deviation of onset times. 
 
A model of onset-time transition and deviation 
Let a sequence of intended (normalized) onset times be  and 
a sequence of performed onset times (with deviation) be y.  
Then a model of generating the deviation of onset times can be 
expressed by a conditional probability P( y |θ ) (Figure 1). 
Using this conditional probability and the prior probability 
P(θ ), the inverse model can be calculated as Eq. (1) according 
to the Bayes’ theorem:  
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where P(θ ) represents how likely it is that a player plays the 
sequence of onset times . Because P( y) is independent of , 
it can be ignored.  Thus the solution to the inverse problem of 
determining optimal θ  can be obtained by maximizing Eq. 
(1): 
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Formulation of the hidden Markov models 
P(θ ) and P(y|θ ) can be formulated as a hidden Markov model 
(HMM), which is a probabilistic model that generates a 
transition sequence of hidden states as a Markov chain.  Each 
hidden state in the state transition sequence then generates an 
observation value according to an observation probability.  
 
 Modeling of performance:  
z Target in modeling 

We model the onset time of a musical note (i.e. the start 
time of the note) and introduce a new model of 
distribution of onset times.  While the duration- 
time-based model used in Ref. [8] is limited, our 
onset-time-based model is suitable for treating polyphonic 
performances, such as those including two-hand piano 
voicing and guitar arpeggio. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Forward model and inverse model in the quantization  
problem. 

 
z Unit in modeling 

We use a quarter note (beat) as the unit of each HMM: the 
temporal length corresponding to each HMM is a quarter 
note.  The reason we use the quarter-note unit is to 
distinguish between eighth triplets and sixteenth notes 
within the scope of a quarter note.  The three notes of 
eighth triplets are located on three equi-divided positions 
in a quarter note, while the four notes of the sixteenth 
notes are located on four equi-divided positions in a 
quarter note.  An actual performance consisting of a 
sequence of quarter notes can be modeled and quantized 
by concatenating the quarter-note-length HMMs.   

( ) ( ) (
( )y
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)

This quarter-note modeling has the advantages of 
reducing calculation time and facilitating the preparation 
of the large data sets used for training the model. 

z Unit of quantization 
( ) ( ) ( )θθyθ

θθ
P|P|Pˆ = We introduce two different discrete temporal indices, k and 

i.  The unit of k is a quantization unit to describe 
performed onset time and is 1/480 of a quarter note, which 
is often used in commercial sequencing software.  The 
unit of i is a quantization unit to describe the intended onset 
time and is one-twelfth of a quarter note.  It can describe 
both eighth triplets and sixteenth notes. 

 
 Quarter-note hidden Markov model:  Figure 2 
shows the HMM used in our study.  We model a sequence of 
onset times within a quarter note (beat) by using the HMM.  
All the hidden states of the HMM correspond to possible 
positions of intended onset times, and an observed value that 
comes from a hidden state corresponds to a performed onset 
time with deviation.  Onset times in a beat are quantized into 
12 positions for hidden states, and into 480 positions for 
observation values.  That is, each component of the HMM is 
interpreted as follows. 



 
 Transition of intended  

Onset time 
 
 
Observation probability 
of each state 
 
 
 
 
 
 
 
 
 
 
Performed onset time                                                                  
 

[time] 
                          beat line                                                beat line 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Overview of the quarter-note hidden Markov model 
 
Hidden state i:  intended onset time.  (i =1, …, 12) 
Observation k:  performed onset time.  (k = 1, …, 480) 
Transition probability aij:  probability that intended onset time 
j follows intended onset time i. 
Observation probability bi(k):  probability that performed 
onset time is k and intended onset time is i. 
A state-transition sequence begins with a dummy state “Start” 
and ends with a state “End.”  The following are simple 
examples of state sequences. 
 
z When the player plays four sixteenth notes within a beat  

(Figure 3(a)), 
Start -> 1 -> 4 -> 7 -> 10 -> End. 

z When the player plays three eighth triplets within a beat 
(Figure 3(b)), 
Start -> 1 -> 5 -> 9 -> End. 

z When the player plays a two-notes chord at the beginning 
of a beat (Figure 3(c)), 
Start -> 1 -> 1 -> End. 

z When the player does not play any note within a beat 
(Figure 3(d)), 
Start -> End. 

   (a)                   (b) 
               .....                    ..... 

 
   (c)                   (d) 

                 .....                    ..... 
 
 

Figure 3.  Simple examples of state sequences. 

 Modeling by a combination of multiple HMMs: 
Instead of using a single HMM model, we can use multiple 
HMMs.  The advantage of using multiple models is that each 
model becomes simple.  Here we propose a model consisting 
of four HMMs, each of which represents a different type of 
rhythm structure within a beat, called inside-beat type.  We 
define the following four inside-beat types: sixteenth-note type, 
eight-triplet type, quarter-note type, and no-note type (Figure 
4(b)).  The state transition arcs in the model composed of 
multiple HMMs are simpler than those in a single HMM model 
(Figure 4(a)). 
 
(a) A model consisting of a single HMM. 

 
 
 
 
(b) A model consisting of four HMMs. 

 
 

sixteenth-note type  
 
 eight-triplet type 

 
 quarter-note type 

 
 no-note type 

 
Figure 4.  A model consisting of a single HMM and a model 
consisting of four different HMMs. 



 Estimation of the optimal sequence of onset 
times:  By concatenating the quarter-note HMMs and using 
Viterbi algorithm to search for the sequence of hidden-state 
transitions that maximizes the posterior probability P(θ |y), we 
can estimate the most probable sequence of onset times 
throughout a performance.  When a performance includes T 
notes, the observed onset-time sequence can be denoted y=(y1, 
y2,…, yT).  To acquire the optimal state transition sequence, we 
define δ t(i): 
 

Sequence of                            [time] 
performed onset-times           

,  (3) 
 
where δ

θ

t(i) is the best score (highest probability) of the state 
transition sequence =(θ ,θθ 1 2,…,θ t) conditioned that the t-th 
state t is equal to i, and  denotes a set of all the parameters 
of the model.  The value of the best score satisfies the 
following recurrent equation: 

λ
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The Viterbi algorithm searches for the optimal sequence of state 
transitions by scanning paths on a trellis from left to right  
(Figure. 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  A trellis for finding the optimal state transition.   
 
The horizontal axis in Figure 5 represents the performed onset 
times and the vertical axis represents the twelve hidden states of 
the HMM.  The optimal state transition sequence can be 
obtained by choosing one optimal state from 12 possible states 
while using Eq. (4) to calculate δ t(i) from left to right on this 
trellis.  When the state transition passes across a beat line, two 
dummy states, "End" and "Start," should be inserted. 
 
 

3. LEARNING MODEL PARAMETERS 
 
By preparing the intended onset times  (correct data) and the 
performed onset times y as training data, it learns a model of 
onset-time transition P(θ ) represented as aij and a model of 
generating the deviation of onset times P(y|θ ) represented as 
bj(k).  

θ

Training data 
In order to estimate the model parameters aij and bj(k), we 
prepared two sets of training data, artificially generated data 
and human-performance data.  Artificial data is mainly used to 
confirm that the program works properly. 
 
 Artificial data: For each beat we randomly decide 
whether the inside-beat type is sixteenth-note type or 
eighth-triplets type.  The number of notes in the beat was 
determined by random numbers between one and six.  Then 
the position of each note was determined randomly: there are 
four possible positions in the case of sixteenth notes and three 
possible positions in the case of eighth triplets. Finally, using a 
normal (Gaussian) distribution with the average 0 and the 
standard deviation , we make the onset times in random data σ
θ a deviate, and obtain the artificial data ya. Here the three sets 
of data were generated by using  = 10, 20, 30 (1 beat = 480). σ

( ) ( )λ|y,...,y,yiθθ,...,θ,θPi t21t1t-21θ,...,θ,θt
1t-21

;=;max=δ

 
( ) ( )1tjijt ybaij +δ=  Human-performance data: The human- 

performance data yh are actual MIDI recordings performed by 
three human players (guitarists), A, B, and C.  Each player 
played on a MIDI guitar along a fixed-tempo jam session 
accompaniment.  The length of each performance was twelve 
choruses (1 chorus = 12 bars).  Every player performed in two 
different tempos: one is 120 M.M. and the other is an arbitrary 
tempo decided by that player. Consequently there were 6 sets of 
data. 
 
 Correct data: For supervised learning, it is 
necessary to prepare correct data, which is the intended onset 
times.  In the case of artificial data, the onset-time positions 
θ a before adding random deviation can be used as the correct 
data.  For human-performance data, however, we should 
prepare the correct data by hands.  By using the commercial 
sequencing software (Twelve Tone System, Cakewalk Pro 
Audio 9) providing a visual piano-roll display, we manually 
quantized each performed note so its position and duration are 
proper. 
 
Estimation of model parameters 
The HMM parameters aij and bj(k) were learned from correct 
data  and the sequence y of performed onset times.  Figure 
6(a) shows a distribution of b

θ
5(k) learned from artificial data 

with the standard deviation = 20 (1 beat = 480)  and Figure 
6(b) shows a distribution of b

σ
5(k) learned from the second 

performance of the player C (we call it performance C2).  The 
b5(k) learned from artificial data (Figure 6 (a)) becomes a 
normal distribution because it was generated by normally 
distributed random numbers.  The b5(k) learned from the 
performance C2 (Figure 6 (b)) is also nearly normally 
distributed but is skewed to the right.  This shows that a note 
on the state 5 tended to be delayed from its original position.   
In fact, in the performance C2 the first note of eighth triplets 
tended to be played longer and the onset time of the second 
note consequently tended to be delayed. 
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         (a) b5(k) obtained from artificial data. 

                  (b) b5(k) obtained from human-performance data. 
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[k: Onset time which the player performed] 

 
Figure 6: b5(k) obtained from artificial data and 
human-performance data. 
 
 
 

4. EXPERIMENTAL RESULTS 
 
We tested the proposed method on both artificial data and 
human-performance data.  We evaluated the performance of 
quantization by using the correct rate we defined as follows: 
 
 
   ( ) ( )                                              

( )
onsets ofnumber  the

correctly quantized onsets ofnumber  the
=ratecorrect (5) 

 
 
Quantization performance of commercial sequencing 
software 
To evaluate the baseline quantization performance of 
commercial sequencing software, we specified three different 
grid intervals (eighth triplet, sixteenth note, and sixteenth 
triplet) on the software and calculated the correct rate of 
quantization for each of them (Table 2).  The correct rates 
obtained with other grid intervals were worse than the rates 
listed in Table 2. 
 
Table 1 also shows the percentages of the four different 
inside-beat types contained in each performance, which 
percentages were calculated on the basis of the correct data.  
The results listed in Tables 1 and 2 show that the correct rates 
of the sequencing software tended to be lower for the 
performances containing many sixteenth-note-type beats, such 
as all the artificial data and the two human-performance data 
sets A1 and C1.  The correct rate for the human-performance 
data set C2 indicates that the simple quantization with 
eighth-triplets grids is effective enough for the performance 
without sixteenth-note-type beats. 
 
Quantization performance of our method with the 
parameters learned from the same performance data 
Table 2 also shows the correct rates for our method using either 
the single-HMM model or the four-HMM model.  For most of 
the performances, the correct rates for our method were higher 

than those for the sequencing software.  With the artificial data, 
all the correct rates for both the single-HMM model and the 
four-HMM model were at least 20 percent higher than those for 
the sequencing software.  These results show that our 
HMM-based method is effective for both artificial and 
human-performance data. 
 
We also compared the performances of the single-HMM model 
and the four-HMM model.  With human-performance data, the 
correct rates for the four-HMM model were higher than those 
for the single-HMM model; this is because the four-HMM 
model can represent the observation probability in further detail 
by learning three different b1(k) corresponding to the three 
states (sixteenth-note type, eighth-triplets type, and quarter-note 
type) at the beginning of a beat.  With artificial data, the 
correct rates for the single-HMM model and the four-HMM 
model were the same because both the b1(k) parameter obtained 
by the single-HMM model and the three different b1(k) 
parameters obtained by the four-HMM model were the same 
normal (Gaussian) distribution, which was used for adding 
random deviation when generating the artificial data. 
 
Quantization performance of our method with the 
parameters learned from other performance data. 
To evaluate the generalization capability of the method, we 
calculated the correct rates obtained when the method was used 
with the following three different sets of the four-HMM model 
parameters: 
(1) parameters learned from the other performance of the same 
player, 
(2) parameters learned from the performances of the other two 
players, and 
(3) parameters learned from the artificial data (σ = 20). 
 
The results, listed in Table 3, show that with the parameter set 
(1) the correct rates for players A and B were at most 6.4 
percent lower than those obtained when using the parameters 
learned from the same performance data (at the bottom line of 
Table 2) and that the correct rates for player C were about 20 
percent lower.  This is because the performances C1 and C2 
had very different styles (C2 did not contain sixteenth-note-type 
beats), whereas the performances A1 and A2 as well as B1 and 
B2 were of a similar style. 
 
The results obtained with the parameter sets (2) and (3) show 
that the correct rates for players A and B were lower than those 
obtained with the parameter set (1) and that the correct rates for 
the player C were lower than those obtained with the 
parameters learned from the same performance data. 
  
These results showed that our method was able to acquire the 
player's characteristic manner of generating onset-time 
transition and deviation and that the model parameters learned 
from a performance of a player can be applied to performances 
of the same player if the performance styles are similar. 



 
5. CONCLUSION 

 
This paper has described a quantization method using a HMM 
model of onset-time transition and deviation.  This method 
makes it possible to estimate the intended onset times (without 
deviation) from the onset times (with deviation) performed 
along a fixed-tempo jam session accompaniment.  
Experimental results showed that the proposed model trained 
using the correct data performed better than commercial 
sequencing software. 
 
We plan to use this method to create the phrase database for our 
jam session system automatically and also to extend the method 
by enabling it to estimate the model parameters from session 
recordings without correct data. 
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Table 1: Percentages of four kinds of beat included in correct data. 

 Artificial data Player A Player B Player C 
 σ =10 σ =20 σ =30 A1 A2 B1 B2 C1 C2 
Sixteenth-note type 38.8% 38.8% 38.8% 21.4% 5.5% 6.5% 2.7% 37.2% 0.0% 
Eighth-triplet type 37.8% 37.8% 37.8% 54.2% 68.7% 58.2% 85.8% 42.1% 39.7% 
Quarter-note type 6.9% 6.9% 6.9% 6.8% 10.1% 11.9% 6.4% 5.9% 26.7% 
No-note type 16.4% 16.4% 16.4% 17.6% 15.7% 23.3% 5.1% 14.8% 33.8% 

 
Table 2: Performance of commercial sequence software and of our method. 

 Artificial data Player A Player B Player C 
 σ =10 σ =20 σ =30 A1 A2 B1 B2 C1 C2 
Commercial sequencing software (eighth triplet) 65.6% 58.2% 62.0% 67.6% 85.6% 79.4% 88.6% 57.0% 97.7% 
Commercial sequencing software (sixteenth note) 63.9% 67.9% 65.9% 54.5% 37.3% 36.8% 34.7% 70.7% 45.5% 
Commercial sequencing software (sixteenth triplet) 77.1% 70.7% 60.8% 57.7% 48.4% 57.8% 51.3% 56.1% 82.8% 
The single HMM model of our method 99.6% 95.9% 86.5% 75.9% 84.8% 80.0% 90.5% 85.1% 95.0% 
The four HMMs model of our method 99.5% 95.9% 86.5% 82.3% 89.8% 81.4% 92.8% 85.5% 95.7% 

  Notes: Underlined rates are those for which the proposed method outperforms the commercial sequencing software. 
 

Table 3: Quantization results obtained using the model parameters for other performances. 
 Artificial data Player A Player B Player C 
 σ =10 σ =20 σ =30 A1 A2 B1 B2 C1 C2 
1) Other performance of the same player - - - 75.9% 85.3% 79.4% 91.6% 55.5% 77.9% 
2) Performance of two other players - - - 70.2% 79.0% 59.2% 73.5% 76.9% 93.1% 
3) Artificial data - - - 73.3% 53.4% 60.8% 55.2% 82.5% 86.1% 
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