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Abstract. This paper describes a method that enables us to detect the local 

boundaries of a generative theory of tonal music (GTTM). Although systems that 

enable us to automatically acquire local boundaries have been proposed such as a 

full automatic time-span tree analyzer (FATTA) or σGTTM, musicologists have to 

correct the boundaries because of numerous errors. In light of this, we propose a 

novel method called deepGTTM-I for detecting the local boundaries of GTTM by 

using a deep learning technique. The experimental results demonstrated that 

deepGTTM-I outperformed the previous analyzers for GTTM in an F-measure of 

detecting local boundaries. 

Keywords: A generative theory of tonal music (GTTM), local grouping 

boundary, deep learning. 

1   Introduction 

We propose a method of automatically acquiring local grouping boundaries based on 

a generative theory of tonal music (GTTM) [1]. GTTM is composed of four modules, 

each of which assigns a separate structural description to a listener’s understanding of 

a piece of music. These four modules output a grouping structure, metrical structure, 

time-span tree, and prolongational tree. As the acquisition of local grouping 

boundaries is the first step in GTTM, an extremely accurate analyzer makes it 

possible to improve the performance of all the later analyzers. 

   We previously constructed several analyzers or methods that enabled us to acquire 

local grouping boundaries such as: an automatic time-span tree analyzer (ATTA) [5], 

a fully automatic time-span tree analyzer (FATTA) [6], a GTTM analyzer by using 

statistical learning (σGTTM) [7], and a GTTM analyzer based on clustering and 

statistical learning (σGTTMII) [8]. However, the performance of these analyzers or 

methods was inadequate in that musicologists had to correct the boundaries because 

of numerous errors. 

   We propose deepGTTM-I in which we attempted to use deep learning [9] to 

improve the performance of acquiring local grouping boundaries to detect them. 
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Unsupervised training in the deep learning of deep layered networks called pre-

training helps supervised training, which is called fine-tuning [10]. 

   Our goal was to develop a GTTM analyzer that enabled us to output the results 

obtained from analysis that were the same as those obtained by musicologists based 

on deep learning by learning the results of analysis obtained by musicologists. We 

had to consider three issues in constructing a GTTM analyzer based on deep learning. 

 

 Multi-task Learning 

A model or network in a simple learning task estimates the label from an input 

feature vector. However, local grouping boundaries can be found in many note 

transitions. Therefore, we consider a single learning task as estimating whether 

one note transition can be a boundary or not. Then, a problem in detecting local 

grouping boundaries can be solved by using multi-task learning.  

Subsection 4.3 explains multi-task learning by using deep learning.  

 

 Large scale training data  

Large scale training data are needed to train a deep layered network. Labels are 

not needed in pre-training the network. Therefore, we collected 15,000 pieces of 

music formatted in musicXML from Web pages that were introduced in the 

MusicXML page of MakeMusic Inc. [11]. We needed labeled data to fine-tune 

the network. Although we had 300 pieces with labels in the GTTM database [12], 

this number was too small to enable the network to learn.  

Subsection 4.1 explains how we collected the data and how we got the network 

to learn effectively with a small dataset. 

 

 GTTM rules 

GTTM consists of multiple rules and a note transition that is applied to many 

rules tends to be a local grouping boundary in the analysis of local grouping 

boundaries. As a result of analysis by musicologists, 300 pieces in the GTTM 

database were not only labeled with local grouping boundaries, but also labeled 

with applied positions of grouping preference rules. Therefore, the applied 

positions of grouping preference rules were helpful clues in detecting local 

grouping boundaries.  

Subsection 4.3 explains how the network learned with the grouping preference 

rules. 

 

The results obtained from an experiment demonstrated that multi-task learning using 

the deep learning technique outperformed the previous GTTM analyzers in grouping 

boundaries. 

   The paper is organized as follows. Section 2 describes related work and Section 3 

explains our method called deepGTTM-I. Section 4 explains how we evaluated the 

performance of deepGTTM-I and Section 5 concludes with a summary and an 

overview of future work. 
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2   Related work 

We consider GTTM to be the most promising of the many theories that have been 

proposed [2–4], in terms of its ability to formalize musical knowledge, because 

GTTM captures the aspects of musical phenomena based on the Gestalt occurring in 

music and is presented with relatively rigid rules. We have been constructing both 

systems of analysis and application of GTTM for more than a decade (Fig. 1) [13]. 

The horizontal axis in Fig. 1 indicates years. Above the timeline are analyzers or 

methods that we developed. 

2.1   System of Analysis for GTTM based on Full Parameterization 

We first constructed a grouping structure analyzer and metrical structure analyzer 

(Figs. 1a and b). We developed an ATTA (Fig. 1c) [5] by integrating a grouping 

structure analyzer and a metrical analyzer. We extended the GTTM by full 

externalization and parameterization and proposed a machine-executable extension of 

the GTTM, exGTTM. We implemented the exGTTM on a computer that we call 

ATTA The ATTA had 46 adjusted parameters to control the strength of each rule. 

The ATTA we developed enabled us to control the priority of rules, which enabled us 

to obtain extremely accurate groupings and metrical structures. However, we needed 

musical knowledge like that which musicologists have to properly tune the parameters. 

FATTA [6] (Fig. 1d) did not have to tune the parameters because it automatically 

calculated the stability of structures and optimized the parameters so that the 

structures would be stable. FATTA achieved excellent analysis results for metrical 

structures, but results for grouping structures and time-span trees were unacceptable. 

We constructed an interactive GTTM analyzer [14] (Fig. 1e) that enabled seamless 

changes in the automatic analysis and manual editing processes because it was 

difficult to construct an analyzer that could output analysis results in the same way as 

musicologists. The interactive GTTM analyzer is still used to collect GTTM analysis 

data and everyone can download and use it for free [15]. 

However, all these systems or methods [5, 6, 14, 15] had problems. ATTA needed 

musical knowledge to tune the parameters. FATTA performed poorly. 

2.2   System of Analysis for GTTM based on statistical learning 

σGTTM [7] (Fig. 1f) enabled us to automatically detect local grouping boundaries 

by using a decision tree. Although σGTTM performed better than FATTA, it was 

worse than ATTA after the ATTA parameters had been tuned. 

σGTTMII [8] (Fig. 1g) had clustering steps for learning the decision tree and it 

outperformed ATTA if we could manually select the best decision tree. Although 

σGTTMII performed the best in detecting grouping boundaries, it was difficult to 

select the proper decision tree without musical knowledge. 

σGTTMIII [16] (Fig. 1h) enabled us to automatically analyze time-span trees by 

learning with a time-span tree of 300 pieces from the GTTM database [12] based on 

probabilistic context-free grammar (PCFG). σGTTMIII performed the best in  
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Fig. 1. Related work on analysis and application systems for GTTM. 
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acquiring time-span trees. pGTTM [17] (Fig. 1i) also used PCFG and we used it to 

attempt unsupervised learning. The main advantages of σGTTMIII and pGTTM were 

that the systems could learn the contexts in difference hierarchies of the structures 

(e.g., beats were important in the leaves of time-span trees, or chords were important 

near the roots of the trees.). 

However, all these systems or methods [7, 8, 16, 17] had problems with detecting 

local grouping boundaries. σGTTM III and the pGTTM were focused on acquiring 

time-span trees and could not acquire local grouping boundaries.σGTTM II needed 

musical knowledge to select the decision tree. As σGTTM and the σGTTM II used 

rules that musicologists applied, they could not work as standalone analyzers. For 

example, information on parallel phrases is needed when detecting local grouping 

boundaries because parallel phrases create parallel structures in GTTM. However, 

σGTTM and σGTTM II do not have processes for acquiring parallel phrases. 

We introduced deep learning to analyzing GTTM to solve these problems. 

2.3   Application System by Using Analysis Results of GTTM 

There are applications that we constructed under the time-line in Fig. 1 to use the 

results from analysis of GTTM. The time-span and prolongational trees provide 

performance rendering [18] and music reproduction [19] and provide a summarization 

of the music. This summarization can be used as a representation of a search, 

resulting in music retrieval systems [20]. It can also be used for melody morphing, 

which generates an intermediate melody between two melodies in systematic order 

[21, 22]. 

   These systems presently need a time-span tree analyzed by musicologists because 

our analyzers do not perform optimally. 

2.4   Melody Segmentation 

As conventional methods of melody segmentation such as the Grouper of the 

Melisma Music Analyzer by Temperley [23] and the local boundary detection model 

(LBDM) by Cambouropoulos [24] require the user to make manual adjustments to the 

parameters, they are not completely automatic. Although Temperley [25] has also 

employed a probabilistic model, it has not been applied to melody segmentation. The 

unsupervised learning model (IDyOM) proposed by Pearce et al. makes no use of the 

rules of music theory with regard to melodic phrases, and it has performed as well as 

Grouper and LBDM [26]. However, as deepGTTM-I statistically and collectively 

learns all the rules for the grouping structure analysis of GTTM, we expect that 

deepGTTM-I will perform better than a model that only uses statistical learning. 
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3   GTTM and Its Implementation Problems 

Figure 2 Shows local grouping boundaries, a grouping structure, a metrical structure, 

a timespan tree, and a prolongational tree (Fig. 2). The detection of local grouping 

boundaries in the grouping structure corresponds to melody segmentation. 

 
 

Fig. 2. Local grouping boundaries, grouping structure, metrical structure, time-span 

tree, and prolongational tree. 

3.1   Grouping Preference Rules 

The grouping structure is intended to formalize the intuitive belief that tonal music is 

organized into groups that are in turn composed of subgroups. These groups are 

presented graphically as several levels of arcs below a music staff. There are two 

types of rules for grouping in GTTM, i.e., grouping well-formedness rules (GWFRs) 

and grouping preference rules (GPRs). GWFRs are necessary conditions for the 

assignment of a grouping structure and restrictions on these structures. When more 

than one structure can satisfy the well-formedness rules of grouping, GPRs indicate 

the superiority of one structure over another. The GPRs consist of seven rules: GPR1 

(alternative form), GPR2 (proximity), GPR3 (change), GPR4 (intensification), GPR5 

(symmetry), GPR6 (parallelism), and GPR7 (time-span and prolongational stability). 

GPR2 has two cases: (a) (slur/rest) and (b) (attack-point). GPR3 has four cases: (a) 

(register), (b) (dynamics), (c) (articulation), and (d) (length).  

3.2   Conflict Between Rules 

Because there is no strict order for applying GPRs, a conflict between rules often 

occurs when applying GPRs, which results in ambiguities in analysis. Figure 3 

outlines a simple example of the conflict between GPR2b (attack-point) and GPR3a 

(register). GPR2b states that a relatively greater interval of time between attack points 

Grouping structure

Metrical structure

Time-span tree

Prolongation tree

Local grouping boundary
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initiates a grouping boundary. GPR3a states that a relatively greater difference in 

pitch between smaller neighboring intervals initiates a grouping boundary. Because 

GPR1 (alternative form) strongly prefers that note 3 alone does not form a group, a 

boundary cannot be perceived at both 2-3 and 3-4. 

 
 

Fig. 3. Simple example of conflict between rules.  

3.3   Ambiguity in defining GPR4, 5, and 6 

GTTM does not resolve much of the ambiguity that exists in applying GPR4, 5, and 6. 

For example, GPR6 (Parallelism) does not define the decision criteria for construing 

whether two or more segments are parallel or not. The same problems occur with 

GPR4（Intensification）and GPR5 (Symmetry). 

4   deepGTTM-I: local grouping boundary analyzer based on 

deep learning 

We introduced deep learning to analyze the structure of GTTM and solve the 

problems described in Subsections 3.2 and 3.3. There were two main advantages of 

introducing deep learning. 

 

 Learning rules applications 

We constructed a deep layered network that could output whether each rule was 

applicable or not on each note transition by learning the relationship between the 

scores and positions of applied grouping preference rules with the deep learning 

technique.  

Previous analysis systems based on GTTM were constructed by a human 

researcher or programmer. As described in Subsection 3.3, some rules in GTTM 

are very ambiguous and the implementations of these rules might differ 

depending on the person. 

However, deepGTTM-I is a learning based system where the quality of the 

analyzer depends on the training data and trained network. 

 

 Learning priority of rules 

σGTTM and σGTTMII do not work well because they only determine the 

priority of rules from applied rules because the priority of rules depends on the 

3a 2b
Candidate 1

Candidate 2

Violate GPR1
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context of a piece. The input of the network in deepGTTM-I, on the other hand, 

is the score and it learns the priority of the rules as the weight and bias of the 

network based on the context of the score. 

 

This section describes how we detected the local grouping boundaries by using deep 

learning.  

4.1   Datasets for training 

Three types of datasets were used to train the network, i.e., a non-labeled dataset for 

pre-training, a half labeled dataset, and a labeled dataset for fine-tuning. 

 (a) Non-labeled dataset. The network in pre-training learned the features of the 

music. A large scale dataset with no labels was needed. Therefore, we collected, 

15,000 pieces of music formatted in musicXML from Web pages that were introduced 

on the musicXML page of MakeMusic Inc. [11] (Fig. 3a). The musicXMLs were 

downloaded in three steps. 

1) Web autopilot script made a list of urls that probably downloaded musicXMLs in 

five links from the musicXML page of MakeMusic Inc. 

2) The files in the url list were downloaded after urls had been omitted that were 

clearly not musicXML.  

3) All the downloaded files were opened using the script, and files that were not 

musicXML were deleted. 

(b) Half Labeled Dataset. The network in fine-tuning learned with the labeled 

dataset. We had 300 pieces with a labeled dataset in the GTTM database, which 

included musicXML with positions of local grouping boundaries, and positions to 

which the grouping preference rules were applied. However, 300 pieces were 

insufficient for deep learning. 

Consequently, we constructed a half labeled dataset. We automatically added the 

labels of six applied rules of GPR2a, 2b, 3a, 3b, 3c, and 3d, because these rules could 

be uniquely applied as a score. We used ATTA to add labels to these rules (Fig. 3b).   

(c) Labeled dataset. We artificially increased the labeled dataset, because 300 pieces 

in the GTTM database were insufficient for training a deep layered network. First, we 

transposed the pieces for all 12 keys. Then, we changed the length of note values to 

two times, four times, eight times, a half time, a quarter time, and an eighth time. 

Thus, the total labeled dataset had 25,200 (= 300x12x7) pieces (Fig. 3c). 
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Fig. 4. Non-labeled dataset, half labeled dataset, and labeled dataset. 

4.2   Deep Belief Network 

We used a deep belief network (DBN) to detect the local grouping boundaries (Fig. 5). 

Figure 5 outlines the structure for the DBN we used. The input of DBN was the onset 

time, offset time, pitch, and velocity of note sequences from musicXML. The output 

of DBN formed multi-tasking learning, which had 11 outputs, such as 10 kinds of 

grouping preference rules (GPR2a, 2b, 3a, 3b, 3c, 4, 5, 6, and 7) and local grouping  

4.3   Multidimensional multi-task learning 

The DBN that we introduced in Subsection 4.2 was a very complex network. The 

fine-tuning of local grouping boundaries was a multi-task learning itself. The fine-

tuning of each grouping preference rule also involved multi-task learning. Therefore, 

the fine-tuning of grouping preference rules involved multidimensional multi-task 

learning. 

 

Multi-task learning. The processing flow for the multi-task learning of a grouping 

preference rule or local grouping boundaries involved four steps. 

Step 1: The order of the pieces of training data was randomly shuffled and a piece 

was selected from top to bottom. 

Step 2: The note transition of the selected piece was randomly shuffled and a note 

transition was selected from top to bottom. 

Step 3: Back propagation from output to input was carried out in which the note 

transition had a boundary or the rule was applied (=1) or not (=0). 

Step 4: The next note transition was repeated or the next piece in steps 2 and 1. 

Multidimensional multi-task learning. The processing flow for the 

multidimensional multi-task learning of grouping preference rules involved three 

steps. 

Step 1: The order of grouping preference rules was randomly shuffled and a rule was 

selected from top to bottom. 

Step 2: Multi-task learning of the selected grouping preference rule was carried out. 

Step 3: The next rules in step 1 were repeated. 

 

（a) Non-labeled 
dataset

（b) Half labeled 
dataset

（c)  Labeled 
dataset

Web autopilot 15,000 pieces  (musicXML)

ATTA

- MusicXML
- Applied rules

GTTM database

- MusicXML

- MusicXML
- Applied rules
- Local grouping boundaries

300 pieces
x 12 keys
x 7 kinds of a 

note value
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Fig. 5. Deep belief network for detect local grouping boundaries. 

Proc. of the 12th International Symposium on CMMR, São Paolo, Brazil, July 5-8, 2016

17



deepGTTM-I    11  

 

5   Experimental Results 

We evaluated the performance of deepGTTM-I by using 100 pieces from the GTTM 

database where the remaining 200 pieces were used to train the network. Table 1 

summarizes the results for a network that had 11 layers with 3000 units. 

Table 1.  Performance of ATTA, σGTTM, σGTTMII, and deepGTTM-I.  

 Precision P Recall R F measure 

ATTA with manual editing of parameters 0.737 0.441 0.552 

σGTTM 0.467 0.736 0.571 

σGTTMII with manual selection of decision tree 0.684 0.916 0.783 

deepGTTM-I 0.784 0.814 0.799 

 

The results indicate deepGTTM-I outperformed the previous analyzers in the F-

measure. ATTA had adjustable parameters and σGTTMII could select the decision 

tree. The performance of ATTA and σGTTMII changed depending on the parameters 

or decision trees. Table 1 indicates the best performance was achieved by manual 

editing. However, as σGTTM and deepGTTM-I had no parameters for editing, 

deepGTTM-I performed extremely robustly. 

6   Conclusion 

We developed a local grouping boundaries analyzer called deepGTTM-I that was 

based on deep learning. We proposed multidimensional multi-task learning that 

efficiently learned local grouping boundaries and grouping preference rules by 

sharing the network. We prepared three kinds of datasets to learn the network, such as 

non-labeled, half labeled, and labeled datasets because labeled datasets were very 

limited and some labels of GPR2 and 3 could automatically acquire the previous 

analyzer of GTTM. After a network that had 11 layers with 3000 units had been 

trained, deepGTTM-I outperformed the previously developed analyzers for local 

grouping boundaries in the F measure. 

   This work was the first step in implementing GTTM by using deep learning. We 

plan to implement a complete analysis of GTTM by using deep learning. We also plan 

to analyze the network after local grouping boundaries are learned. 
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