
DeepGTTM-II: Automatic Generation of Metrical Structure based on Deep
Learning Technique

Masatoshi Hamanaka
Kyoto University

hamanaka@kuhp.kyoto-u.ac.jp

Keiji Hirata
Future University Hakodate

hirata@fun.ac.jp

Satoshi Tojo
JAIST

tojo@jaist.ac.jp

ABSTRACT

This paper describes an analyzer that automatically gener-
ates the metrical structure of a generative theory of tonal
music (GTTM). Although a fully automatic time-span tree
analyzer has been developed, musicologists have to cor-
rect the errors in the metrical structure. In light of this, we
use a deep learning technique for generating the metrical
structure of a GTTM. Because we only have 300 pieces
of music with the metrical structure analyzed by musicol-
ogist, directly learning the relationship between the score
and metrical structure is difficult due to the lack of train-
ing data. To solve this problem, we propose a multidi-
mensional multitask learning analyzer called deepGTM-II
that can learn the relationship between score and metri-
cal structures in the following three steps. First, we con-
duct unsupervised pre-training of a network using 15,000
pieces in a non-labeled dataset. After pre-training, the
network involves supervised fine-tuning by back propa-
gation from output to input layers using a half-labeled
dataset, which consists of 15,000 pieces labeled with an
automatic analyzer that we previously constructed. Finally,
the network involves supervised fine-tuning using a labeled
dataset. The experimental results demonstrated that the
deepGTTM-II outperformed the previous analyzers for a
GTTM in F-measure for generating the metrical structure.

1. INTRODUCTION

We propose an analyzer for automatically generating a
metrical structure based on a generative theory of tonal mu-
sic (GTTM) [1]. A GTTM is composed of four modules,
each of which assigns a separate structural description to a
listener’s understanding of a piece of music. These four
modules output a grouping structure, metrical structure,
time-span tree, and prolongational tree. As the acquisi-
tion of a metrical structure is the second step in the GTTM
analysis, an extremely accurate analyzer makes it possible
to improve the performance of all later analyzers.

We previously constructed several analyzers that enabled
us to acquire a metrical structure such as the automatic
time-span tree analyzer (ATTA) [2] and fully automatic

Copyright: c⃝ 2016 Masatoshi Hamanaka et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

time-span tree analyzer (FATTA) [3]. However, the perfor-
mance of these analyzers was inadequate in that musicol-
ogists had to correct the boundaries because of numerous
errors.

For this paper, we propose the deepGTTM-II with which
we use deep learning [4] to improve the performance of
generating a metrical structure from a score. Unsupervised
training in the deep learning of deep-layered networks
called pre-training aids in supervised training, which is
called fine-tuning [5].

Our goal was to develop a GTTM analyzer that enables
us to output the results obtained from analysis that are the
same as those obtained by musicologists based on deep
learning by learning the analysis results obtained by musi-
cologists. We had to consider three issues in constructing
such a GTTM analyzer.

• Multi-task learning
A model or network in a simple learning task esti-
mates the label from an input feature vector. How-
ever, metrical strength of each beat can be found in
every beats. Therefore, we consider a single learning
task as estimating whether one beat can be a strong
beat or weak beat. Then, a problem in detecting a
metrical structure can be solved by using multi-task
learning.

Subsection 4.3 explains multi-task learning by using
deep learning.

• Hierarchical metrical structure
A hierarchical metrical structure is generated by it-
erating the choice of the next level structure. The
next level structure is recursively generated using the
previous structure. However, when we use learning
with a single standard network of deep learning, it
is difficult to lean a higher level structure because
many network representations are used for learning
a lower level structure

Subsection 4.2 explains how to learn a higher level
structure.

• Large scale training data
Large-scale training data are needed to train a deep-
layered network. Labels are not needed for pre-
training the network. Therefore, we collected 15,000
pieces of music formatted in musicXML from Web
pages that were introduced in the MusicXML page
of MakeMusic Inc [6]. We needed labeled data to
fine-tune the network. Although we had 300 pieces

with labels in the GTTM database [7], this number
was too small to enable the network to learn.

Subsection 4.1 explains how we collected the data
and how we got the network to learn effectively with
a small dataset.

• GTTM rules
A GTTM consists of several rules, and a beat that is
applied to many rules tends to be strong in metrical
structure analysis. As a result of analysis by mu-
sicologists, 300 pieces in the GTTM database were
not only labeled with the correct metrical structure
but also labeled with applied positions of metrical
preference rules. Therefore, the applied positions of
metrical preference rules were helpful clues for esti-
mating whether one beat can be strong or weak.

Subsection 4.2 explains how the network learned
with the metrical preference rules.

• Sequential vs. recurrent models
There are two types of models, i.e., recurrent and se-
quential, that can be used for analyzing a hierarchi-
cal metrical structure. The recurrent neural network
provides recurrent models, which are suitable for an-
alyzing a metrical structure in which cyclical change
results in strong and a weak beats. However, the re-
current neural network is difficult to train and train-
ing time is very long. On the other hand, sequen-
tial models, such as deep belief networks (DBN),
are not suitable for detecting the repetition of strong
beats. However, the DBN is very simple and per-
forms well in detecting the local grouping boundary
of the GTTM in deepGTTM-I.

Therefore, we choose the DBN for analyzing the
metrical structure of a piece. Subsection 4.2 explains
how the DBN is trained for analyzing metrical struc-
ture.

The results obtained from an experiment suggest that our
multi-dimensional multi-task learning analyzer using deep
learning outperforms the previous GTTM analyzers in ob-
taining the metrical structure.

The paper is organized as follows. Section 2 describes
related work and Section 3 explains our analyzer called the
deepGTTM-II. Section 4 explains how we evaluated the
performance of the deepGTTM-II and Section 5 concludes
with a summary and an overview of future work.

2. RELATED WORK

We briefly look back through the history of cognitive mu-
sic theory. The imprecation realization model (IRM) pro-
posed by Narmour abstracts and expresses music accord-
ing to symbol sequences from information from a score
[8, 9]. Recently, the IRM has been implemented on com-
puters and its chain structures can be obtained from a score
[10]. On the other hand, theSchenkeriananalysis analyzes
deeper structures called “Urline” and “Ursatz” from the
music surface [11]. Short segments of music can be an-
alyzed through Schenkerian analysis on a computer [12].

There is another approach that constructs a music theory
for adopting computer implementation [13,14].

The main advantage of analysis by a GTTM is that it can
acquire tree structures called time-span and prolongation
trees. A time-span or prolongation tree provides a summa-
rization of a piece of music, which can be used as the rep-
resentation of an abstraction, resulting in a music retrieval
system [15]. It can also be used for performance render-
ing [16] and reproducing music [17]. The time-span tree
can also be used for melody prediction [18] and melody
morphing [19].

The metrical structure analysis in a GTTM is a kind of
beat tracking. Current methods based on beat tracking
[20–23] can only acquire the hierarchical metrical struc-
ture in a measure because they do not take into account
larger metrical structures such as two and four measures.

Our ATTA [2] by integrating a grouping structure ana-
lyzer and metrical analyzer. The metrical structure ana-
lyzer has 18 adjustable parameters. It enables us to control
the priority of rules, which enables us to obtain extremely
accurate metrical structures. However, we need musical
knowledge like that which musicologists have to properly
tune the parameters.

Our FATTA [3] does not have to tune parameters because
it automatically calculates the stability of structures and
optimizes the parameters to stabilize the structures. How-
ever, its performance for generating a metrical structure is
lower than that of the ATTA.

TheσGTTM [24] enables us to automatically detect lo-
cal grouping boundaries by using a decision tree. The
σGTTMII [25] involves clustering steps for learning the
decision tree and outperforms the ATTA if we can manu-
ally select the best decision tree. TheσGTTMIII [26] en-
ables us to automatically analyze time-span trees by learn-
ing with a time-span tree of 300 pieces of music from
the GTTM database [7] based on probabilistic context-free
grammar (PCFG). The pGTTM [27] also uses PCFG, and
we used it to attempt unsupervised learning. The main
advantages ofσGTTMIII and pGTTM are that they can
learn the context in difference hierarchies of the structures
(e.g., beats are important in the leaves of time-span trees,
or chords are important near the roots of the trees.). How-
ever, none of these analyzers [7,24,25,27] can generate the
metrical structure.

On the other hand, our deepGTTM-I [28] outperforms
the ATTA, FATTA, σGTTM, andσGTTMII in detecting
local grouping boundaries by introducing deep learning for
GTTM analysis. However, it also cannot acquire the hier-
archical grouping structure.

In light of this, we introduce a deep learning analyzer for
generating the hierarchical metrical structure of a GTTM.

3. GTTM AND ITS IMPLEMENTATION
PROBLEMS

Figure 1 Shows a grouping structure, metrical structure,
time-span tree, and prolongational tree. The metrical struc-
ture describes the rhythmical hierarchy of a piece of music
by identifying the position of strong beats at the levels of a
quarter note, half note, measure, two measures, four mea-

Grouping structure

Metrical structure

Time-span tree

Prolonga�on tree

Figure 1. Grouping structure, metrical structure, time-
span tree, and prolongation tree

sures, and so on. Strong beats are illustrated as several
levels of dots below the music staff.

3.1 Metrical Preference Rules

There are two types of rules in a GTTM, i.e., ”well-
formedness” and ”preference”. Well-formedness rules are
necessary for the assignment of a structure and restrictions
on the structure. When more than one structure satisfies
the well-formedness rules, the preference rules indicate the
superiority of one structure over another.

There are ten metrical preference rules (MPRs): MPR1
(parallelism),MPR2 (strong beat early),MPR3 (event),
MPR4 (stress),MPR5 (length), MPR6 (bass),MPR7
(cadence),MPR8 (suspension),MPR9(time-span inter-
action), andMPR10 (binary regularity). MPR5 has six
cases: (a) pitch-event, (b) dynamics, (c) slur, (d) articula-
tion, (e) repeated pitches, and (f) harmony.

3.2 Conflict Between Rules

Because there is no strict order for applyingMPRs, a
conflict between rules often occurs when applying them,
which results in ambiguities in analysis.

Figure2 shows an example of the conflict betweenMPRs
5c and5a. The MPR5c states that a relatively long slur
results in a strong beat, andMPR5a states that a relatively
long pitch-event results in a strong beat. Because metrical
well-formedness rule 3 (MWFR3) states that strong beats
are spaced either two or three beats apart, a strong beat
cannot be perceived at both onsets of the first and second
notes.

5c 5a

Candidate 1

Candidate 2

Figure 2. Example of conflict between MPRs

A beat that is applied to many rules tends to be strong in
the analysis of a metrical structure. However, the number
of rules cannot be determined because the priority of rules
differs depending on the context of a piece.

We expect to learn the rule application and priority of
rules by inputting a whole song with labels of the applied
rules to a deep layered network.

3.3 Ambiguous Rule Definition

Some rules in a GTTM are expressed with ambiguous
terms. For exampleMPR5 is defined as follows.

TheMPR5 (Length), preference for a metri-
cal structure in which a relatively strong beat
occurs at the inception of either

a. a relatively long pitch-event,

b. a relatively long duration of a dynamic,

c. a relatively long slur,

d. a relatively long pattern of articulation,

e. a relatively long duration of a pitch in
the relevant levels of the time-span re-
duction, or

f. a relatively long duration of a harmony
in the relevant levels of the time-span re-
duction (harmonic rhythm)

The term ”relatively” in this sense is ambiguous. Another
example is that a GTTM has rules for selecting proper
structures when discovering similar melodies (called paral-
lelism) but does not define similarity. For exampleMPR1
is defined as follows.

TheMPR1 (Parallelism), where two or more
groups or parts of groups can be construed
as parallel, they preferably receives a parallel
metrical structure.

3.4 Context Dependency

To solve the problems discussed in Subsections 3.2 and
3.3, we proposed the machine executable extension of
GTTM (exGTTM) and ATTA [2]. Figure 3 is an exam-
ple of an application ofMPR4, 5a, 5b, and 5c in the
exGTTM and ATTA. By configuring the threshold param-
etersT j(j = 4, 5a, 5b, and 5c), we can control whether
each rule is applicable. However, proper values of the pa-
rameter depend on the piece of music and on the level of hi-
erarchy in the metrical structure. Therefore, the automatic
estimation of proper values of the parameters is difficult.

3.5 Less Precise Explanation of Feedback Link

A GTTM has various feedback links from higher-level
structures to lower-level ones. For exampleMPR9 is de-
fined as follows.

The MPR9 (Time-span Interaction) has
preference for a metrical analysis that mini-
mizes conflict in the time-span reduction.

[i]

…

velo

[i]

[i]

[i]

Current structure

T4

T5a

T5b

T5c

^ ^ ^ ^
4 4 4 4
5a 5a 5a 5a 5c 5c 5c

^ ̂

5b 5b

5b 5b ^ ̂ ^ ̂
5b 5b 5b 5b

5b 5b

2μ
velo

valu

2μ
valu

vol

2μ
vol

slur

2μ
slur

Figure 3. Application of MPR4, 5a, 5b, and 5c in ATTA

However, no detailed description and only a few exam-
ples are given. Other feedback links in the GTTM rules
are not explicit. For example, analyzing the results of a
time-span tree strongly affects the interpretation of chord
progression, and various rules are related to chord progres-
sion, e.g.,MPR7 (Cadence)requires a metrical structure
in which cadences are metrically stable.

For complete implementation of a GTTM based on deep
learning, we have to introduce the feedback link by using
recurrent neural network; however, we do not focus on the
feedback link in this paper.

4. DEEPGTTM-II: METRICAL STRUCTURE
ANALYZER BASED ON DEEP LEARNING

We adopted deep learning to analyze the structure of a
GTTM and solve the problems described in Subsections
3.2, 3.3, and 3.4. There are two main advantages in adopt-
ing deep learning.

• Learning rule applications
We constructed a deep-layered network that can out-
put whether each rule is applicable on each level of
beat by learning the relationship between the scores
and positions of applied MPRs with deep learning.

Previous analysis systems based on a GTTM were
constructed by a researchers and programmers. As
described in Subsection 3.3, some rules in a GTTM
are very ambiguous and the implementations of
these rules might differ depending on the person.

However, the deepGTTM-II is a learning-based an-
alyzer the quality of which depends on the training
data and trained network.

• Learning priority of rules
Our FATTA does not work well because it only de-
termines the priority of rules from the stability of the
structure because the priority of rules depends on the
context of a piece of music. The input of the network
in the deepGTTM-II, on the other hand, is the score
and it learns the priority of the rules as the weight
and bias of the network based on the context of the
score.

This section describes how we generated a metrical struc-
ture by using deep learning.

4.1 Datasets for training

Three types of datasets were used to train the network, i.e.,
a non-labeled dataset for pre-training, half-labeled dataset,
and labeled dataset for fine-tuning (Fig.4).

Figure 4. Non-labeled, half-labeled, and labeled datasets

(a) Non-labeled dataset. The network in pre-training
learned the features of the music. A large-scale
dataset with no labels was needed. Therefore, we
collected, 15,000 pieces of music formatted in mu-
sicXML from Web pages that were introduced on the
musicXML page of MakeMusic Inc. [11] (Fig.4a).
The musicXMLs were downloaded in the following
three steps.

(1) Web autopilot script made a list of urls that
probably downloaded musicXMLs in five links
from the musicXML page of MakeMusic Inc.

(2) The files in the url list were downloaded af-
ter they had been omitted because they were
clearly not musicXML.

(3) All the downloaded files were opened using the
script, and files that were not musicXML were
deleted.

(b) Half Labeled Dataset. The network in fine-tuning
learned with the labeled dataset. We had 300
pieces of music with a labeled dataset in the GTTM
database, which included musicXML with a met-
rical structure, and positions to which the MPRs
were applied. However, 300 pieces were insufficient
for deep learning. Consequently, we constructed a
half-labeled dataset. We automatically added the
labels of the seven applied rules ofMPR2, 3, 4,
5a, 5b, 5c, and 5d. These rules can be uniquely
applied from a score when we give the threshold
values. We used our ATTA to add labels to these
rules (Fig.4b). With the ATTA, the strength of the
beat dependent on each MPR can be expressed as

Di
j(j = 2, 3, 4, 5a, 5b, 5c, and 5d, 0 ≤ Di

j ≤ 1).
For example,MPR4 is defined in a GTTM as fol-
lows.

The MPR4 (Event), preference for a
metrical structure in which beats of level
Li that are stressed are strong beats ofLi.

We formalizedDi
4 as follows.

Di
4 =

{
1 veloi > 2× µvelo × T 4

0 else,
(1)

whereveloi is the velocity of a note from beati,
µvelo is the average ofveloi, andT j (0 ≤ T j ≤ 1)
are the threshold parameters to control the those
that determines whether the rules are applicable
(Di

j = 1) or not (Di
j = 0). We used 1 as the

threshold parameter value (T j = 1, where j =
2, 3, 4, 5a, 5b, 5c, and 5d).

(c) Labeled dataset. We collected 300 pieces of 8-bar-
long, monophonic, classical music and asked people
with expertise in musicology to analyze them man-
ually with faithful regard to the MPRs. These man-
ually produced results were cross-checked by three
other experts.

We artificially increased the labeled dataset because
300 pieces of music in the GTTM database were in-
sufficient for training a deep-layered network. First,
we transposed the pieces for all 12 keys. We then
changed the length of the note values to two times,
four times, eight times, half time, quarter time, and
eighth time. Thus, the total labeled dataset had
25,200 (= 300x12x7) pieces (Fig.4c).

4.2 Deep Belief Network

We used a deep belief network (DBN) to generate a met-
rical structure. Figure6 outlines the structure for this
DBN. The input of the DBN is the onset time, offset time,
pitch, and velocity of note sequences from musicXML and
grouping structure manually analyzed by musicologists.
Each hierarchical level of the grouping structure is sepa-
rately inputted by a note neighboring the grouping bound-
ary as 1; otherwise, 0.

The output of the DBN formed multi-tasking learning,
which had eight outputs in each hierarchical level of the
metrical structure, such as seven types of MPRs (MPR2,
3, 4, 5a, 5b, 5c, and5d) and one level of the metrical struc-
ture. Individual outputs had two units, e.g., rules that were
not applicable (=0) and rules that were applicable (=1), or
weak beats (=0) and strong beats (=1).

A metrical structure consists of hierarchical levels, and
we added one hidden layer to generate the next structure
level. We used logistic regression to connect the final hid-
den layer (n,n+1,...,n+h) and outputs. All outputs shared
the hidden layer from 1 to the final hidden layer. The net-
work was learned in the four steps below. The order of
music pieces was changed at every epoch in all steps.

(a) Pre-training hidden layers from 1 to n. Unsuper-
vised pre-training was done by stacking restricted
Boltzmann machines (RBMs) from the input layer
to the hidden layern. Pre-training was repeated for a
hundred epochs using 15,000 pieces in a non-labeled
dataset.

(b) Fine-tuning of MPR 2, 3, 4, 5a, 5b, 5c, and 5d.
After pre-training, the network involved supervised
fine-tuning by back propagation from output to input
layers. The fine-tuning of MPR2, 3, 4, 5a, 5b, 5c,
and 5d were repeated for one hundred epochs using
15,000 pieces in the half-labeled dataset.

(c) Fine-tuning of one level of metrical structure.
After learning the MPRs, the network involved su-
pervised fine-tuning by back propagation using the
labeled dataset of 25,200 pieces at a level of the met-
rical structure.

(d) Repeat pre-training and fine-tuning for next level
of metrical structure. If the metrical structure has a
next level (more than two dots), add one hidden layer
and pre-train the hidden layer using the non-labeled
dataset then repeat (b) and (c).

4.3 Multi-dimensional multi-task learning

The DBN we introduced in Subsection 4.2 was a very com-
plex network. The fine-tuning of one level of the metrical
structure was multi-task learning. The fine-tuning of each
metrical preference rule also involved multi-task learn-
ing. Therefore, the fine-tuning of MPRs involved multi-
dimensional multi-task learning (Fig.5).

or

or

or

or

or

Mul!-task learning Mul!-dimensional learning

MPR2

MPR5b

MPR4

MPR5d

MPR3

：
：

Selected from top to bo"om

The order of MPRs

was randomly

shuffled

MPR2

Figure 5. Multi-dimensional multi-task learning

Multi-task learning. The processing flow for the multi-
task learning of an MPR or metrical dots involved four
steps.
Step 1: The order of the music pieces of training data was
randomly shuffled and a piece was selected from top to
bottom.
Step 2: The beat position of the selected piece was ran-
domly shuffled and a beat position was selected from top
to bottom.
Step 3: Back propagation from output to input was carried
out in which the beat position had a strong beat or the rule
was applied (=1) or was not (=0).
Step 4: The next beat position or the next piece in steps 2
and 3 was repeated .

Onset !me

Offset !me

Pitch

Velocity

Hidden
layer 1

Hidden
layer 2

Hidden
layer n -1

Hidden
layer n

Fully- connected

Metrical dots

MPR2

MPR5d

Grouping structure

Level 0

Level 1

Level 2

Level 3

Level 3
Level 2
Level 1
Level 0

Grouping
boundaries

Score

Metrical structure level 0

Hidden
Layer n+1

Metrical dots

MPR2

MPR5d

Metrical structure level 1

 Fully- connected to hidden layer n

Hidden
layer n+h

Metrical dots

MPR2

MPR5d

Metrical structure level h

 Fully- connected to hidden layer n+h-1

Figure 6. Deep belief network for generating metrical structure

Multidimensional multi-task learning. The process-
ing flow for the multi-dimensional multi-task learning of
MPRs involved the following three steps.
Step 1: The order of MPRs was randomly shuffled and a
rule was selected from top to bottom.
Step 2: Multi-task learning of the selected MPR was car-
ried out.
Step 3: The next rules in step 1 were repeated.

5. EXPERIMENTAL RESULTS

We evaluated theFmeasureof the deepGTTM-II by using
100 music pieces from the GTTM database, where the re-
maining 200 pieces were used to train the network. The
Fmeasureis given by the weighted harmonic mean of pre-
cisionP (proportion of selected dots that are correct) and
recallR (proportion of correct dots that were identified).

F measure= 2× P×R
P+R (2)

Table 1 summarizes the results for a network that had 11
hidden layers with 3000 units. The ATTA had adjustable
parameters and its performance changed depending on the
parameters. For the default parameter, we use the middle
value of the range of the parameter [2]. The FATTA had no
parameters for editing.

The results indicate that the deepGTTM-II outperformed
FATTA and ATTA with both default parameters and con-
figured parameters in term of theFmeasure. This results
show that the deepGTTM-II performed extremely robustly.

6. CONCLUSIONS

We developed a metrical structure analyzer called
deepGTTM-II that is based on deep learning. The follow-
ing three points are the main results of this study.

• Music analyzer based on Deep Learning
It has been revealed that deep learning is strong for
various tasks. We demonstrated that deep leaning is
also strong for music analysis. We will try to im-
plement other music theory based on deep learning.
Although we collected 300 pieces of music and ana-
lyzed the results of a GTTM by musicologists, the
300 labeled datasets were not sufficient for learn-
ing a deep-layered network. We therefore used our
previous a GTTM analyzer called ATTA to prepare
three types of datasets, non-labeled, half labeled,
and labeled, to learn the network .

• High-accuracy GTTM analyzer without manual
editing
Previous GTTM analyzers, such as ATTA and
σGTTM, require manual editing; otherwise, the per-
formance will be much worse. TheFmeasures of
GTTM analyzers without manual editing, such as
FATTA, σGTTM, σGTTMIII, and pGTTM, is too

low (under 0.8). On the other hand, the deepGTTM-
II shows extremely high performance, which indi-
cates the possibility of its practical use in GTTM ap-
plications [15–19,29]. We plan to implement the en-
tire GTTM analysis process based on deep learning.

• Multi-dimensional multitask learning
We proposed multi-dimensional multi-task learning
analyzer that efficiently learns the hierarchical level
of the metrical structure and MPRs by sharing the
network. Multi-dimensional multi-task learning is
expected to be applied to other data that have a hi-
erarchy and time series such as film [30] and dis-
cussion [31]. After a network that had 11 layers
with 3000 units had been learned, the deepGTTM-
II outperformed the previously developed analyzers
for obtaining a metrical structure in terms of the
Fmeasure.

This work was one step in implementing a GTTM by us-
ing deep learning. The remaining steps are to implement
time-span reduction analysis and prologational reduction
analysis of a GTTM based on deep learning. There are
two problems as follows. One is generating tree struc-
tures because time-span and prolongation tree structures
are more complex than a hierarchical metrical structure.
The other problem is the lack of training samples because
there are many combinations of tree structures and an un-
learned sample sometimes appear in test data. We will at-
tempt to solve these problems and make it possible to con-
struct a complete GTTM system based on deep learning.

In the current stage, we cannot understand the details on
why deep learning works extremely well for metrical anal-
ysis in a GTTM. Thus, we also plan to analyze a network
after a metrical structure is learned.

7. REFERENCES

[1] F. Lerdahl and R. Jackendoff,A Generative Theory of
Tonal Music, ser. Mit Press series on Cognitive theory
and mental representation. MIT Press, 1985.

[2] M. Hamanaka, K. Hirata, and S. Tojo, “Implementing
’a generative theory of tonal music’,”JNMR, vol. 35,
no. 4, pp. 249–277, 2006.

[3] M. Hamanaka, K. Hirata, and S. Tojo, “Fatta: Full
automatic time-span tree analyzer,” inProceedings of
ICMC2007, 2007, pp. 153–156.

[4] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-
ing algorithm for deep belief nets,”Neural Comput.,
vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[5] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol,
P. Vincent, and S. Bengio, “Why does unsupervised
pre-training help deep learning?”JMLR, vol. 11, pp.
625–660, 2010.

[6] MakeMusic Inc., “Finale,” 2016,
http://www.finalemusic.com/.

deepGTTM-II ATTA ATTA FATTA
Melodies (Default prameters) (Configured parameters)
1. Grande Valse Brillante 0.94 0.88 0.93 0.88
2. Moments Musicaux 1.00 0.95 1.00 1.00
3. Trukish March 0.98 0.91 0.96 0.96
4. Anitras Tanz 0.90 0.82 0.86 0.82
5 Valse du Petit Chien 0.99 0.87 0.92 0.95

: : : :
Total (100 melodies) 0.96 0.84 0.90 0.88

Table 1. Performance of deepGTTM-II, ATTA, and FATTA

[7] M. Hamanaka, K. Hirata, and S. Tojo, “Music struc-
tural analysis database based on gttm,” inProceedings
of ISMIR2014, 2014, pp. 325–330.

[8] E. Narmour, The Analysis and Cognition of Ba-
sic Melodic Structures: The Implication-realization
Model. University of Chicago Press, 1990.

[9] E. Narmour,The Analysis and Cognition of Melodic
Complexity: The Implication-Realization Model. Uni-
versity of Chicago Press, 1992.

[10] S. Yazawa, M. Hamanaka, and T. Utsuro, “Melody
generation system based on a theory of melody se-
quences,” inProc. of ICAICTA2014, 2014, pp. 347–
352.

[11] S. Heinrich,Free Composition: New Musical Theories
and Fantasies. Pendragon Pr, 5 2001.

[12] A. Marsden, “Software for schenkerian analysis,” in
Proc. of ICMC2011, 2011, pp. 673–676.

[13] D. Temperley,The Cognition of Basic Musical Struc-
tures. MIT Press, 2004.

[14] F. Lerdahl,Tonal Pitch Space. Oxford University
Press, USA, 2001.

[15] K. Hirata and S. Matsuda, “Interactive music summa-
rization based on generative theory of tonal music,”
JNMR, vol. 5, no. 2, pp. 165–177, 2003.

[16] K. Hirata and R. Hiraga, “Ha-hi-hun plays chopin’s
etude,” in Working Notes of IJCAI-03 Workshop on
Methods for Automatic Music Performance and their
Applications in a Public Rendering Contest, 2003, pp.
72–73.

[17] K. Hirata and S. Matsuda, “Annotated music for re-
trieval, reproduction,” inProc. of ICMC2004, 2004, pp.
584–587.

[18] M. Hamanaka, K. Hirata, and S. Tojo, “Melody expec-
tation method based on gttm and tps,” inProc. of IS-
MIR2008, 2008, pp. 107–112.

[19] M. Hamanaka, K. Hirata, and S. Tojo, “Melody mor-
phing method based on gttm,” inProc. of ICMC2008,
2008, pp. 155–158.

[20] D. Rosenthal, “Emulation of human rhythm percep-
tion,” CMJ, vol. 16, no. 1, pp. 64–76, 1992.

[21] M. Goto, “An audio-based real-time beat tracking sys-
tem for music with or without drum-sounds,”JNMR,
vol. 30, no. 2, pp. 159–171, 2001.

[22] S. Dixon, “Automatic extraction of tempo and beat
from expressive performance,”JNMR, vol. 30, no. 1,
pp. 39–58, 2001.

[23] M. Davies and S. Bock, “Evaluating the evaluation
measures for beat tracking,” inProc. of ISMIR2014,
2014, pp. 637–642.

[24] Y. Miura, M. Hamanaka, K. Hirata, and S. Tojo, “De-
cision tree to detect gttm group boundaries,” inProc.
of ICMC2009, 2009, pp. 125–128.

[25] K. Kanamori and M. Hamanaka, “Method to detect
gttm local grouping boundarys based on clustering and
statistical learning,” inProc. of SMC2014, 2014, pp.
1193–1197.

[26] M. Hamanaka, K. Hirata, and S. Tojo, “σgttmiii:
Learning based time-span tree generator based on
pcfg,” in Proc. of CMMR2015, 2015, pp. 303–317.

[27] E. Nakamura, M. Hamanaka, K. Hirata, and K. Yoshii,
“Tree-structured probabilistic model of monophonic
written music based on the generative theory of tonal
music,” inProc. of ICASSP2016, 2016, pp. 276–280.

[28] M. Hamanaka, K. Hirata, and S. Tojo, “deepgttm-i:
Local boundaries analyzer based on deep learning tech-
nique,” inProc. of CMMR2016, 2016, pp. 6–20.

[29] M. Hamanaka, M. Yoshiya, and S. Yoshida, “Con-
structing music applications for smartphones,” inProc.
of ICMC2011, 2011, pp. 308–311.

[30] S. Takeuchi and M. Hamanaka, “Structure of the film
based on the music theory,” inJSAI2014, 2014, 1K5-
OS-07b-4 (in Japanese).

[31] T. Oshima, M. Hamanaka, K. Hirata, S. Tojo, and
K. Nagao, “Development of discussion structure edi-
tor for discussion mining based on muisc theory,” in
IPSJ SIG DCC, 2013, 7 pages (in Japanese).

