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Abstract. This paper describes an analyzer that simultaneously learns the 
grouping and metrical structures on the basis of the generative theory of tonal 
music (GTTM) by using a deep learning technique. The GTTM is composed of 
four modules that are in series. The GTTM has feedback loop in which the 
former module uses the result of the latter module. However, each module is 
independent in previous GTTM analyzers, thus they do not form a feedback 
loop. For example, deepGTTM-I and deepGTTM-II independently learn the 
grouping and metrical structures by using a deep learning technique. In light of 
this, we present deepGTTM-III, a new analyzer that includes the concept of 
feedback that enables simultaneous learning of grouping and metrical structures 
by integrating both networks of deepGTTM-I and deepGTTM-II. Experimental 
results show that deepGTTM-III outperforms deepGTTM-I and deepGTTM-II. 

Keywords: A generative theory of tonal music (GTTM), grouping structure, 
metrical structure, deep learning. 

1   Introduction 

Our goal is to develop a system that enables a time-span tree of a melody to be 
automatically acquired on the basis of the generative theory of tonal music (GTTM) 
[1]. GTTM is composed of four modules, each of which assigns a separate structural 
description to a listener’s understanding of a piece of music. These four modules 
respectively output a grouping structure, metrical structure, time-span tree, and 
prolongational tree. The grouping structure is intended to formalize the intuitive belief 
that tonal music is organized into groups that are in turn composed of subgroups. 
These groups are presented graphically as several levels of arcs below a music staff. 
The metrical structure describes the rhythmical hierarchy of a piece of music by 
identifying the position of strong beats at the levels of a quarter note, half note, 
measure, two measures, four measures, and so on. Strong beats are illustrated as 
several levels of dots below the music staff (Fig. 1). 
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Fig. 1. Grouping structure, Metrical structure, time-span tree, and prolongational tree 
 
The time-span tree provides performance rendering [2], music reproduction [3], 

and a summarization of the music [4]. This summarization can be used as a 
representation of a search, resulting in music retrieval systems. It can also be used for 
melody morphing, which generates an intermediate melody between two melodies in 
a systematic order [5, 6]. These systems presently need a time-span tree analyzed by 
musicologists because previous analyzers [7, 8] do not perform optimally.  

There are three big problems when implementing GTTM on a computer.  
 Conflict between rules.  

There are two types of rules in GTTM: well-formedness rules (WFRs) and 
preference rules (PRs). WFRs are necessary conditions to assign a structure and 
restrictions on these structures. When more than one structure can satisfy the 
WFRs, PRs indicate the superiority of one structure over another. 
Because there is no strict order for applying PRs, a conflict between rules often 
occurs when applying them, which results in ambiguities in analysis. Figure 2 shows 
an example of the conflict between metrical preference rules (MPRs) 5c and 5a. The 
MPR5c states that a relatively long slur results in a strong beat, and MPR5a states 
that a relatively long pitch-event results in a strong beat. Because metrical WRF 3 
(MWFR3) states that strong beats are spaced either two or three beats apart, so a 
strong beat cannot be perceived at both onsets of the first and second notes. 
 

 
Fig. 2. Conflict between two metrical preference rules 
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We developed an automatic time-span tree analyzer (ATTA) [7] that had 46 
adjusted parameters to control the strength of each rule. In other words, the ATTA 
we developed enabled us to control the priority of rules, which enabled us to 
obtain extremely accurate groupings and metrical structures. However, we needed 
musical knowledge like that of musicologists to properly tune the parameters.  
The full ATTA (FATTA) [8] does not have to tune the parameters because it 
automatically calculates the stability of structures and optimizes the parameters so 
that the structures are stable. FATTA obtains excellent analysis results for metrical 
structures but unacceptable results for grouping structures and time-span trees. 
In our deepGTTM, the deep layered network enables us to learn the priority of rules.  

 Difficult to integrate bottom up and top down processes  
GTTM rules include bottom up and top down rules. For example, GPR2 is a 
bottom up rule that prescribes the relationship of onset (attack) and offset 
(release) timings and a grouping boundary. In contrast, GPR5 is a top down rule 
that prefers that a group be divided into two subgroups of the same length. 
The ATTA and FATTA output frequently wrong higher level hierarchical 
structures even when low-level structure is correct because they only use bottom 
up a process. 
In contrast, we also developed analyzers that only use a top down process called 
σGTTM [9], σGTTMII [10], and σGTTMIII [11]. σGTTM and σGTTMII can 
detect the local grouping structure in GTTM analysis by combining the GTTM 
with statistical learning. However, σGTTM and σGTTMII are only suitable for 
grouping structures and cannot acquire time-span trees. σGTTMIII enabled us to 
automatically analyze time-span trees by learning with a time-span tree of 300 
pieces from the GTTM database [12] on the basis of probabilistic context-free 
grammar (PCFG). σGTTMIII performed the best at acquiring time-span trees. 
However, these analyzers [7-11] do not perform sufficiently for use in 
application systems [2-6]. 
In our deepGTTM, the deep layered network learns both top down and bottom 
up rules from learning data.  

 Feedback loops 
The four modules in the GTTM are in series, that is, the latter module uses the 
result of the former module. The GTTM also has a feedback loop in which the 
former module uses the result of the latter module. For example, GPR7 (time-
span and prolongational stability) prefers a grouping structure that results in a 
more stable time-span and/or prolongation reduction. For another example, 
MPR9 (time-span interaction) prefers a metrical analysis that minimizes conflict 
in the time-span reduction. However, each module is independent in previous 
GTTM analyzers, thus they do not form a feedback loop. For example, 
deepGTTM-I [13] and deepGTTM-II [14] independently learn the grouping and 
metrical structures by using a deep learning technique. 
Figure 3 summarizes the theory of Lerdahl and Jakendoff [1]. The lower right 
shows the preference rules. If we naively implement this theory, the analysis 
process is endless looping when the output is divergence. 

In light of this, we present deepGTTM-III, a new analyzer that solves the above 
problems and enables simultaneous learning of grouping and metrical structures by 
integrating both networks of deepGTTM-I and deepGTTM-II. The deep 
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layerednetwork learns the priority of rules that solves the conflict between rules. The 
network also learns both bottom up and top down rules. By integrating both networks  
of deepGTTM-I and deepGTTM-II, the integrated network possesses information for 
acquiring the metrical structure and the grouping structure. Therefore, the information 
for acquiring the metrical structure can be used for acquiring the grouping structure, 
and vice versa. Therefore, a feedback loop is implicitly constructed inside the network. 

The network is pre-trained by using 15,000 pieces of music formatted in 
musicXML acquired by web crawling. We use 300 pieces from the GTTM database: 
200 for fine-tuning and 100 for evaluation [15]. Experimental results show that the 
integrated network outperforms the independent network.  

The paper is organized as follows. Section 2 describes related work, and Section 3 
explains our GTTM analyzers: deepGTTM-I, II, and III. Section 4 explains how we 
evaluated the performances of deepGTTM-I, II, and III, and Section 5 concludes with 
a summary and an overview of future work.  

 
Fig. 3. Summary of Lerdahl and Jakendoff’s theory 

2   Related Work 

Deep learning has recently been used for tasks in the area of music information 
retrieval [15-19] and shows the potential to solve various kinds of tasks in the area. 
An automatic tagging system using a fully convolutional network was developed that 
predicts high-level information about a music clip, such as emotion, genre, and 
instrumentation [15]. An automatic chord detection system using bottleneck 
architecture of a deep layered network outperforms previous systems based on 
support vector machines (SVMs) and hidden Markov models (HMMs) [16]. An 
automatic chord estimation system based on a hybrid Gaussian HMM and deep 
learning approach enables very large chord progression to be estimated [17]. A music 
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recommendation system using deep convolutional neural networks to predict latent 
factors from music audio shows that deep convolutional neural networks significantly 
outperform more traditional approaches [18]. An automatic polyphonic music 
transcription using a supervised neural network model performed the best across the 
two most common unsupervised acoustic models [19]. These systems [15-19] replace 
other machine learning techniques with deep learning and performed better than 
traditional machine learning techniques. 

The traditional machine learning techniques cannot work well in our task of 
acquiring hierarchical musical structure. In other words, only deep learning enables 
the relationship between inputting score and outputting structure to be learned. Direct 
learning between inputs to output does not work well because they have gaps that are 
too wide. Therefore, we made two steps for learning. First, the network learns each 
rule’s application. The deep layered network can easily learn rules in the GTTM. 
After learning the rules’ applications, the network can learn the relationship between 
inputting score and outputting structure. That is, the network gains musical 
knowledge by learning the GTTM rules. 

3   deepGTTM-I, II, and III  

deepGTTM-I, II, and III are GTTM analyzers based on deep learning. deepGTTM-I 
analyzes local grouping boundaries of a grouping structure [13], and deepGTTM-II 
analyzes the metrical structure [14]. In this paper, we present deepGTTM-III, which 
integrates deepGTTM-I and II. 
  There are three main advantages of using deep learning for GTTM analysis. 
 Learning applications of both bottom up and top down rules 

Previous analysis systems based on the GTTM were constructed by a human 
researcher or programmer. Some rules in the GTTM are very ambiguous, and 
their implementations might differ depending on the person. However, 
deepGTTM is a learning based system where the quality of the analyzer depends 
on the training data and trained network. To learn both bottom up and top down 
rules, the input of the network includes the score information of the whole 
analysis area. 

 Learning priority of rules 
σGTTM and σGTTMII do not work well because they only determine the 
priority of rules from applied rules because the priority of rules depends on the 
context of a piece. The input of the network in deepGTTM, on the other hand, is 
the score, and the network learns the priority of the rules as the weight and bias 
of the network on the basis of the context of the score. 

 Feedback loop in deep layered network 
There are several kinds of feedback process in deepGTTM-III because a deep 
layered network is trained by multi-task learning with grouping and metrical 
structures. When the grouping structure is learned, the important information for 
acquiring grouping and metrical structures is propagated because the 
deepGTTM-III shares hidden nodes for acquiring both grouping and metrical 
structures. Similarly, when the metrical structure is learned, the important 
information for acquiring grouping structure is also propagated. 
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3.1   Structure of Network  

We used a deep belief network (DBN) for deepGTTM-I, II, and III. Figure 4 outlines 
the structure for the DBN of deepGTTM-I. The input of the DBN was the onset time, 
offset time, pitch, and velocity of note sequences from musicXML. All inputs are 
normalized from 0 to 1. The output of DBN formed multi-tasking learning, which had 
10 outputs: 9 kinds of grouping preference rules (GPR2a, 2b, 3a, 3b, 3c, 4, 5, 6, and 
7) and local grouping.  

Figure 5 outlines the structure of deepGTTM-II. The inputs of deepGTTM-II are 
the onset time, offset time, pitch, and velocity, and grouping structure manually 
analyzed by musicologists. Each hierarchical level of the grouping structure is 
separately inputted by a note neighboring the grouping boundary as 1; otherwise, 0. 
There are eight outputs of deepGTTM-II that enable multi-tasking learning in each 
hierarchical level of the metrical structure, i.e., seven MPRs (MPR2, 3, 4, 5a, 5b, 5c, 
and 5d), and one level of the metrical structure. Individual outputs have two units, e.g., 
rules that were not applicable (=0) and rules that were applicable (=1), or weak beats 
(=0) and strong beats (=1). A metrical structure consists of hierarchical levels, and we 
added one hidden layer to generate the next structure level. We used logistic 
regression to connect the final hidden layer (n,n+1,..., n+h) and outputs. All outputs 
shared the hidden layers from 1 to the final hidden layer. 

Figure 6 outlines the structure of the DBN we call deepGTTM-III to generate a 
grouping and metrical structure. deepGTTM-III has the same input as deepGTTM-I, 
and its output is the same as the merged output of deepGTTM-I and II.  

 
 

 
Fig. 4 DBN for deepGTTM-I. 
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Fig. 5 DBN for deepGTTM-II. 
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3.2   Learning Networks  

This section describes how we learned the local grouping boundaries and metrical 
structure by using deep layered networks.  

Pre-training. For pre-training, the network learned the features of the music. A large 
scale dataset with no labels was needed, so we collected, 15,000 pieces of music 
formatted in musicXML from Web pages that were linked to on the musicXML page 
of MakeMusic Inc. [20]. The musicXMLs were downloaded in three steps. 
1) A Web autopilot script made a list of URLs that were most likely files of 
musicXMLs from five links on the musicXML page of MakeMusic Inc. 
2) The files in the URL list were downloaded after the URLs that were clearly not 
musicXMLs had been omitted.  
3) All the downloaded files were opened using the script, and files that were not 
musicXML were deleted. 

By using a restricted Boltzmann machine, each network of deepGTTM-I, II, and 
III was pre-trained. 

Learning rules application and strucutre. The network in a fine-tuning learned 
with the labeled dataset. We had 300 pieces with a labeled dataset in the GTTM 
database, which included musicXMLs with positions of local grouping boundaries, 
positions of dots of each hierarchy of the metrical structure, and positions to which 
the grouping and metrical preference rules were applied. However, these 300 pieces 
were insufficient for deep learning. 

Consequently, we constructed a half-labeled dataset. We automatically added the 
labels of six applied rules of GPR2a, 2b, 3a, 3b, 3c, and 3d, and MPR3, 5a, 5b, 5c, 5d 
because these rules could be uniquely applied as a score. We used our ATTA to add 
labels to these rules. 

We also artificially increased the labeled dataset because the 300 pieces in the 
GTTM database were insufficient for training a deep layered network. First, we 
transposed the pieces for all 12 keys. Then, we changed the length of note values to 
two times, four times, eight times, a half time, a quarter time, and an eighth time. 
Thus, the total labeled dataset had 25,200 (= 300x12x7) pieces. 
The priority of rules and grouping and metrical structures are learned by back 
propagation of the deep layered network using the half-labeled dataset and labeled 
dataset. deepGTTM-I and II have very complex networks. The fine-tuning of local 
grouping boundaries and one level of the metrical structure involves multi-task 
learning. The fine-tuning of each PR also involved multi-task learning. Therefore, the 
fine-tuning of PRs involves multi-dimensional multi-task learning. The processing 
flow for the learning of a GPR or local grouping boundaries has four steps. The order 
of music pieces was changed at every epoch in all steps. 
1) The order of the pieces of training data is randomly shuffled, and a piece is selected 
from top to bottom. 
2) The note transition of the selected piece is randomly shuffled and a note transition 
is selected from top to bottom. 
3) Back propagation from output to input is carried out on the basis of whether the 
note transition had a boundary or the rule was applied (=1) or not (=0). 
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Fig. 6 DBN for deepGTTM-III. 
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4) The next note transition or the next piece in steps 1 and 2 is repeated. 
The processing flow for the learning of an MPR or metrical dots involved four steps. 

1) The order of the music pieces of training data is randomly shuffled, and a piece is 
selected from top to bottom. 
2) The beat positions of the selected piece are randomly shuffled, and a beat position 
is selected from top to bottom. 
3) Back propagation from output to input is carried out on the basis of whether the 
beat position had a strong beat or the rule was applied (=1) or not (=0). 
4) The next piece in step 1 or the next beat position in step 2 is repeated. 

The processing flow for the multidimensional multi-task learning of PRs involves 
three steps. 
1) The order of PRs is randomly shuffled, and a rule is selected from top to bottom. 
2) Multi-task learning of the selected PR is carried out. 
3) The next rules in step 1 are repeated. 

Simultaneous learning of grouping and metrical structures in deepGTTM-III. 
The deep layered network of deepGTTM-III is trained by a multi-task learning 
technique of the grouping and metrical structures. The main difference in learning and 
acquiring the metrical structure in deepGTTM-II and deepGTTM-III is that the 
grouping structure is needed in the input data of deepGTTM-II but not for 
deepGTTM-III. In other words, deepGTTM-III predicts low level grouping 
boundaries by itself and uses the information for predicting the low level grouping 
boundaries for predicting the metrical structure. 

The network of deepGTTM-I and II first learns each rule application by fixed 
numbers epochs and then learns the structure on the same epochs. Then it repeats 
learning of rule applications and structure learning. In contrast, deepGTTM-III 
repeats learning of GPR applications, grouping structure, MPR applications, and 
metrical structure by fixed numbers epochs. In the network of deepGTTM-III, all 
learning processes of grouping and metrical structures interact, so the feedback loop 
described in section 3 is formed implicitly. 

A GPR and a MPR are sometimes learned complementarily when the rules are 
learned because some GPRs and MPRs are very similar. For example, GPR6 
(parallelism) prefers form parallel parts of a group, where two or more segments of the 
music can be construed as parallel, and MPR1 (parallelism) prefers a parallel metrical 
structure, where two of more groups or parts of groups can be construed as parallel. 

In another example, consider a sequence of four notes: n1, n2, n3, and n4. GPR2b 
(Attack-Point) states the transition n2-n3 may be heard as a group boundary if the 
interval between the attack points of n2 and n3 is greater than that between the attack 
points of n1 and n2 and that between the attack points of n3 and n4. MPR5a prefers a 
metrical structure in which a relatively strong beat occurs at the inception of a 
relatively long pitch-event. 

4   Experimental Results 

We evaluated the deepGTTM by using 100 music pieces from the GTTM database; 
the remaining 200 pieces were used to train the network. The F-measure is given by 
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the weighted harmonic mean of precision P (proportion of selected dots that are 
correct) and recall R (proportion of correct dots that were identified). 

Table 1 compares the results for deepGTTM-III with those for deepGTTM-I and 
deepGTTM-II for a network that had 11 layers with 3000 units. The results indicate 
that deepGTTM-III obtained a higher F-measure for acquiring local grouping 
boundaries than deepGTTM-I. On the other hand, deepGTTM-III obtained an F-
measure for acquiring the metrical structure similar to that of deepGTTM-II and 
slightly higher than that of deepGTTM-III. We use the correct grouping structure in 
the GTTM database because the deepGTTM-II needs the grouping structure for input 
of the network. In contrast, the deepGTTM-III does not need the grouping structure, 
so it is effective even when there is no correct grouping structure. 

Table 1.  Performances of deepGTTM-I, II, and III. 

 Low level grouping boundary Metrical structure 
Melodies deepGTTM-III deepGTTM-I deepGTTM-III deepGTTM-II 
1. Grande Valse Brillante 0.80 0.79 0.93 0.94 
2. Moments Musicaux 0.80 0.81 0.99 1.00 
3. Turkish March 0.77 0.76 0.96 0.98 
4. Anitras Tanz 0.78 0.76 0.90 0.90 
5. Valse du Petit Chien 0.80 0.78 0.99 0.99 
 : : : : 
Total (100 melodies) 0.81 0.78 0.94 0.96 

5   Conclusion 

We presented deepGTTM-III, which integrates a grouping structure analyzer called 
deepGTTM-I and a metrical structure analyzer called deepGTTM-II. Whereas 
deepGTTM-I and deepGTTM-II have to learn grouping and metrical structures 
independently, the deepGTTM-III learns them simultaneously. Experimental results 
showed that deepGTTM-III obtained a higher F-measure for acquiring local grouping 
boundaries than deepGTTM-I and a similar F-measure for acquiring the metrical 
structure to deepGTTM-II. This work was one step in implementing a generative 
theory of tonal music (GTTM) based on deep learning. We plan to implement time-
span reduction analysis on the basis of deep learning. 
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