

ATTA: AUTOMATIC TIME-SPAN TREE ANALYZER BASED ON
EXTENDED GTTM

Masatoshi Hamanaka Keiji Hirata Satoshi Tojo
PRESTO, Japan Science and

Technology Agency
A.I.S.T. 1-1-1 Umezono,
Tsukuba, Ibaraki, Japan

m.hamanaka@aist.go.jp

NTT Communication Science
Laboratories

2-4, Hikaridai, Seikacho, Kei-
hanna Science City, Kyoto, Japan
hirata@brl.ntt.co.jp

Japan Advanced Institute of
Science and Technoloty

1-1, Asahidai, Nomi,
Ishikawa, Japan

tojo@jaist.ac.jp

ABSTRACT
This paper describes a music analyzing system called the
automatic time-span tree analyzer (ATTA), which we
have developed. The ATTA derives a time-span tree that
assigns a hierarchy of 'structural importance' to the notes
of a piece of music based on the generative theory of
tonal music (GTTM). Although the time-span tree has
been applied with music summarization and collabora-
tive music creation systems, these systems use time-span
trees manually analyzed by experts in musicology. Pre-
vious systems based on GTTM cannot acquire a time-
span tree without manual application of most of the rules,
because GTTM does not resolve much of the ambiguity
that exists with the application of the rules. To solve this
problem, we propose a novel computational model of the
GTTM that re-formalizes the rules with computer im-
plementation. The main advantage of our approach is
that we can introduce adjustable parameters, which en-
ables us to assign priority to the rules. Our analyzer
automatically acquires time-span trees by configuring
the parameters that cover 26 rules out of 36 GTTM rules
for constructing a time-span tree. Experimental results
showed that after these parameters were tuned, our
method outperformed a baseline performance. We hope
to distribute the time-span tree as the content for various
musical tasks, such as searching and arranging music.

Keywords: ATTA, Generative Theory of Tonal Music
(GTTM), time-span tree, grouping structure, metrical
structure, musical knowledge, knowledge acquisition.

1 INTRODUCTION
We propose a method for implementing a music theory
called Generative Theory of Tonal Music (GTTM) [1].
It is difficult for those who are not musical experts to
manipulate music, because commercial music se-
quence software today only operates on the surface
structure of music, such as the notes, rests, and chords.

Our goal is to create a system that will enable a musical
novice to manipulate a piece of music, which is an am-
biguous and subjective media, according to the user's in-
tentions, by implementing the musical knowledge of mu-
sicians. Our first step was to attempt to implement the
GTTM, which analyses the meaning of a piece of music
and interprets the implicit intentions of the composer.

 Musical theory provides us with the methodologies
for analyzing and transcribing musical knowledge, ex-
periences, and skills from a musician's way of thinking.
Our concern is whether or not the concepts necessary for
music analysis are sufficiently externalized in musical
theory. We consider the GTTM to be the most promis-
ing theory among the many that have been proposed
[2–4], in terms of its ability to formalize musical
knowledge, because the GTTM captures the aspects of
the musical phenomena based on the Gestalt occurring
in music and is presented with relatively rigid rules.

The time-span tree provides a summarization of a
piece of music, which can be used as the representation
of a search, by analyzing the results from the GTTM, re-
sulting in a music retrieval system [5]. It can also be used
for performance rendering [6-8] and reproducing music
[9]. These systems enable users to manipulate music us-
ing a time-span tree, disregarding the surface structure of
the music. However, the time-span trees in these systems
need to be manually analyzed by experts in musicology.

 The biggest problem with computer implementation
of the GTTM is that musical theories, including GTTM,
are ambiguous, because music interpretation is tacit and
subjective. Beside that most of the musical theories are
presented for humans, without taking into consideration
computer logic. Attempts have been made to implement
several rules of the GTTM, but when these rules conflict
we could not adequately resolve the priority in multiple
rules [10, 11]. On the other hand, the computer model of
the GTTM [12] could produce a time-span tree, but it re-
quired manual application of most of the rules.

 To overcome the ambiguity of the GTTM rules, we
propose an extended GTTM that re-formalizes the
rules and establishes an algorithm for acquiring a time-
span tree by numerical expressions. In the expressions,
we introduce adjustable parameters for controlling
tacitness, ambiguity, and subjectiveness. The extended
GTTM now covers 26 rules out of 36 GTTM rules for
constructing a time-span tree. We implemented a time-
span analyzer, called ATTA, based on the extended
GTTM in Perl. User can acquire the time-span tree by
using ATTA via CGI application on the Internet.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

© 2005 Queen Mary, University of London

358

…
3^a 3a6 6 3a,6

This paper is organized in the following way. We
present the problem of applying GTTM rules in Sec-
tion 2, propose extended GTTM in Section 3, describe
the time-span analyzer and it’s examples in Section 4
and 5, and present experimental results and conclusion
in Sections 6 and 7. Lastly, we provide in the appendix
all the expressions to implement the GTTM analyzer.

2 INTRODUCTION OF GTTM AND ITS
PROBLEMS

The GTTM is composed of four modules, each of which
assigns a separate structural description to a listener’s un-
derstanding of a piece of music. These four modules out-
put a grouping structure, a metrical structure, a time-span
tree, and a prolongational tree, respectively (Figure 1).

…
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ ・ ・ ・ ・ ・ ・・ ・ ・ ・・ ・・

Time-span tree

Metrical structure
Grouping structure

Figure 1. Grouping structure, Metrical structure,
and Time-span tree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

＾＾ ＾ ＾The grouping structure is intended to formalize the
intuitive belief that tonal music is organized into groups
that are in turn composed of subgroups. These groups
are graphically presented as several levels of arcs below
a music staff. The metrical structure describes the
rhythmical hierarchy of the piece by identifying the po-
sition of strong beats at the levels of a quarter note, half
note, a measure, two measures, four measures, and so
on. Strong beats are illustrated as several levels of dots
below the musical staff. The time-span tree is a binary
tree, which is a hierarchical structure describing the
relative structural importance of notes that differentiate
the essential parts of the melody from the ornamentation.
For example the left-hand side of Figure 2 depicts a
simple melody and its tree. The time-span (designated
as <--->) is represented by a single note, called a head,
which is designated here as “C4”.

AbstractingInstantiating

head
C4 C4

⊂−

Figure 2. Subsumption relation of melodies.

 There are two types of rules in GTTM, i.e., “well-
formedness rules” and “preference rules”. Well-
formedness rules are the necessary conditions for the
assignment of a structure and the restrictions on the
structures. When more than one structure satisfies the
well-formedness rules, the preference rules indicate the
superiority of one structure over another.

In this section, we specify the problems with the
GTTM rules in terms of computer implementation.

2.1 Ambiguous concepts defining preference rules

The GTTM uses some undefined words, causing ambi-
guities in the analysis. For example, the GTTM has rules
for selecting proper structures when discovering similar
melodies (called parallelism), but does not have the defi-
nition of similarity itself.

To solve this problem we attempted to formalize the cri-
teria for deciding whether each rule is applicable or not.

2.2 Conflict between preference rules

The conflict between rules often occurs when applying
the rules and results in ambiguities in the analysis be-
cause there is no strict order for applying the preference
rules. Figure 3 shows a simple example of the conflict
between the grouping preference rules (GPR). GPR3a
(Register) is applied between notes 3 and 4 and GPR6
(Parallelism) is applied between notes 4 and 5. A
boundary cannot be perceived at both 3-4 and 4-5, be-
cause GPR1 (alternative form) strongly prefers that note
4, by itself, cannot form a group.

To solve this problem we introduced adjustable pa-
rameters that enable us to control the strength of each rule.

Figure 3. Simple example of conflict between rules.

2.3 Few mentions to how to calculate hierarchical
structures

The GTTM does not define a valid procedure for acquir-
ing the hierarchical structure. It is not realistic to first
make every structure satisfy the well-formedness rules
and then select the optimal structure. For example, only
a ten note score provides 185794560 (= !9) kinds of
time-span trees.

 　92 ×

To solve this problem we developed an algorithm for
acquiring the hierarchical structure, taking into consid-
eration some of the examples in the GTTM.

2.4 Less precise explanation of feedback link

The GTTM has some feedback links from higher level
structures to lower level ones, e.g. GPR7 (time-span and
prolongational stability) prefers a grouping structure
that results in a more stable time-span and/or prolonga-
tion reductions. However, no detailed description and
only a few examples are given.

3 EXTENDED GTTM
To overcome the problems with computer implementa-
tion of the GTTM, we propose a computational model of
the GTTM called the extended GTTM, which covers 26
rules out of 36 GTTM rules for constructing time-span
tree. The remaining 4 rules are for feedback links and
another 6 rules are for homophony. In the current stage,
we restrict the music structure to monophony to cor-
rectly evaluate the performance of each rule.

359

 In this section we particularize our proposed exten-
sion of the GTTM for computer implementation. The
policies are equally applied to the three analyses, which
are the grouping structure, metrical structure, and Time-
span reduction analyses.

3.1 Re-formalization of rules

In order to deal with the preference rules on a computer,
we have expressed the rules into numerical styles. Nu-
meric descriptions of the rules allow to quantitatively
combine the result of each rule application.

We expressed the degree of application of the rule as a
numerical function Di

rule which output 1 (applicable) or 0
(not applicable) if the rule is clearly applicable or not. For
example, GPR2b (Attack-Point) states that a relatively
greater interval of time between attack points initiates a
grouping boundary that can be expressed as follows:

⎩
⎨
⎧ ><

= +−

lsee
ioioii and ioioii

D iiiiGPR2b
i 0

1 11
, (1)

i : transition of note
ioi i : inter onset intervals.

A numerical function Di
rule outputs between 1 (applica-

ble) and 0 (not applicable) if the rule is not clearly ap-
plicable or not. For example, time-span reduction pref-
erence rule 3a (TSRPR3a) that prefers that a higher me-
lodic pitch is used as the head of a time-span can be
expressed as follow:

j
j

i
TSRPR3
i pitchpitchD max= , (2)

i : head
pitch i : pitch (note number of MIDI).

3.2 Refinement of ambiguous concepts

As described above, the GTTM uses some undefined
concepts that provide ambiguousness in analysis. The
concepts are ambiguous, with no unique definition. For
example, the concept of a similar melody has a lot of
plausible definitions [13], but no best one.

Here, we attempted to formalize concepts based on
the following two policies, which we esteem.

1) To define intuitionally and comprehensively.
2) Equipment adjustable parameters for control

of the ambiguity.

3.2.1 Concept for symmetry

GPR5 is the rule for symmetry in a grouping structure. It
prefers grouping analyses that most closely approach the
ideal subdivision of groups into two parts of equal length.
 We define the degree of symmetry Di

GPR5 so that there
is a preference to subdivide a group into two parts of equal
length. Here, we use a normal distribution with the stan-
dard deviation σ as the degree of symmetry, as follows.

 (3)
where
 start : start transition of group.
 end : end transition of a group.

The σ is an adjustable parameter for a user to control the
degree of symmetry. In Figure 4a is the degree of symme-
try corresponding to grouping level a. If the next level
boundary is found in the middle of the group by applying
all grouping rules, the next grouping level’s the degree of
symmetry will be like the one shown in Figure 4b.

start end startgrouping level a
start end startgrouping level b end start

Di
GPR5

[time]0

Di
GPR5

[time]0

（a）

（b）

…

1

1

Figure 4. Examples of symmetry level.

3.2.2 Concept for parallelism where
GPR6, MPR1, and TSRPR4 rules for parallelism are as
follows.
GPR6: Where two or more segments of the music can
be construed as parallel, they preferably form parallel
parts of groups.
MPR1: Where two or more groups or parts of groups
can be construed as parallel, they preferably form paral-
lel metrical structures.
TSRPR4: If two of more time-spans can be construed
as motivically and/or rhythmically parallel, preferably
assign them parallel heads.

where

We formalized the concept of parallelism and defined
the degree of parallel in each rule, because the target
structures of the rules are different.

In GPR6, we focused on the parallelism of the seg-
ments. We introduced the degree of parallel for GPR6
Di

GPR6, which indicates a high value at the start and end
of the parallel part (Figure 5). The degree of parallel
Di

GPR6 was calculated by searching all the segments
throughout the score. The length of the segments is
from a beat to a half of the score by every beat.

GPR6 has three adjustable parameters for controlling
the degree of parallel: Wr (priority to the same rhythm
compared with the same register in parallel segments),
Ws (priority to one end of a parallel segment compared
with the start of the parallel segment), and Wl (priority
to large parallel segments) (0≦Wr, Ws , Wl ≦1). By
using these parameters, a user can easily find and con-
figure the parallel segment.

Di
GPR6

i0

…

⎭

Figure 5. Example of the degree of parallel.

⎬
⎫2σ

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∑−∑−=

==

GPR5 22exp
end

startj
j

i

startj
ji ioiioiD

360

 In MPR1, we focused on the parallelism of beat in
groups. We introduced the degree of parallel for MPR1 Di

k
MPR1, which is calculated by searching all the groups.

MPR1 has two adjustable parameters for controlling the
degree of parallel: Wr (weight of priority of the same
rhythm compared with the same register in parallel
groups), and TMPR1 (threshold that decides whether beat i
and beat k are parallel (Di k

MPR1= 1) or not (Di k
MPR1= 0)).

In TSRPR4, we focused on the parallelism of time-
spans, which are generated by grouping structure and
metrical structure. We introduced the degree of parallel
for TSRPR4 Di k

TSRPR4, which is calculated by searching
all the time-spans. TSRPR1 has no adjustable parame-
ters for controlling the degree of parallel.

3.3 Resolving the preference rule confliction by pri-
oritizing rules

We introduced adjustable parameters, Srule, for controlling
the strength of the GTTM rules. By using these parameters,
we can acquire the local-level strength of bound-
ary/beat/head. For example, as a result of applying the lo-
cal-level grouping rules, we can acquire low-level grouping
boundaries as weighted summations on the grouping rules
results Di

GPR and adjustable parameter SGPR as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××= ∑∑

=
′′

=)6,3,3,3,3,2,2(

)6,3,3,3,3,2,2(

 max
dcbabaj

jGPRjGPR
iidcbabaj

jGPRjGPR
ii SDSDB .

(4)

3.4 Top-down algorithm for calculating hierarchical
structures

We introduced the top-down process for acquiring the
structures. The hierarchal structure is constructed by
calculating the local strength and choosing the next
level structure.
- Acquisition of grouping structure

The grouping structure is constructed in the following way.
(1) First, consider the whole piece of music as a group.
(2) Then, calculate local-level boundary strengths and

detect low-level boundaries.
(3) Next, select the strongest boundary and divide the

group at the boundary.
(4) Finally, iterate (3) while the local boundaries are

found at the group.
- Acquisition of metrical structure

The metrical structure is constructed in the following way.
(1) First, consider all the beats as a lowest (global) level

metrical structure.
(2) Then, calculate the local-level metrical strength.
(3) Next, select the strongest metrical structure from

possible structures.
(4) Finally, iterate (2) and (3) while the current struc-

tures have more than one beat.
- Acquisition of time-span tree

The time-span tree is constructed in the following way.
(1) First, consider all the notes as a head.
(2) Then, calculate the local-level head strength.
(3) Next, select the next level head from each time-span.
(4) Finally, iterate (2) and (3) while the time-span con-

tains more than one head.

4 STRUCTURE OF ATTA
We implemented the extended GTTM described above
on the computer that we call ATTA. Figure 6 is the over-
view of the ATTA which consists of a grouping struc-
ture analyzer, a metrical structure analyzer, and a time-
span tree analyzer. ATTA has three distinctive features,
an XML-based data structure, its implemented in Perl,
and has a Java-based GUI.

MusicXML

Low-Level boundary

[time]
boundary
strength

Detection of
low-level boundary

Detection of
high-level boundary

GroupingXML

Divide by top down

Applying GPR1, 2, 3, 6

Applying GPR1, 2, 3, 4, 5, 6

()
Bi

Calculation of low-
level beat strength

Choosing next
level structure

MetricalXML

[time]
Di

low-level

(strength of beat) Applying MPR1,2,3,4,5

Current
structure

Choice of
next level
structures

Choosing with applying MPR10

1ˆ =m
2ˆ =m
3ˆ =m
4ˆ =m
5ˆ =m

YesNo
Contains more than one beat

Calculation of
head strength

Choosing next
level structure

Di
time-span

(strength of head)Applying TSRPR1,3,4,8,9

Current
structure

Next level
structure

Time-spanXML

YesNo
Contains more than one head

YesNo
Contains more than one boundary

Grouping Structure Grouping Structure
AnalyzerAnalyzer

Metrical Structure Metrical Structure
AnalyzerAnalyzer

TimeTime--span tree span tree
AnalyzerAnalyzer

Figure 6. Processing flow of ATTA.

4.1 XML based data structure

We use an XML format for all the input and output data
structures of the ATTA. Each analyzer of the ATTA
works independently but are integrated by the XML-
based data structure.

As a primary input format, we chose MusicXML [14]
because it provides a common ‘interlingua’ for music no-
tation, analysis, retrieval, and other applications. We de-
signed GroupingXML, MetricalXML, and Time-
spanXML as the export formats for our analyzer. The
XML format is extremely qualified to express the hierar-

361

chical grouping structures, metrical structures, and time-
span trees. Note that note elements in GroupingXML, Met-
ricalXML, and Time-spanXML are connected to note ele-
ments in MusicXML, using Xpointer [15] and Xlink [16].

We expect that the distribution of a MusicXML or a
SMF, together with a grouping structure, metrical struc-
ture, and time-span tree, is useful for various musical
tasks such as searching and arranging.

4.2 Implementation in Perl

We implemented the ATTA in Perl so that using CGI
allows it to be used through the internet (available at
http://staff.aist.go.jp/m.hamanaka/atta/). We believe that
the exhibition of this kind of resource is very important
for the music researching community. ATTA is the first
application for automatically acquiring time-span tree.
We hope to benchmark the ATTA to other systems,
which hereafter will be constructed.

4.3 Java based GUI

Although our analyzer implemented in Perl has a simple
user interface, we also developed a graphical user inter-
face in Java called GTTM editor (Figure 7). The GTTM
editor has two modes, the automatic analysis and man-
ual-edit modes. The automatic-analysis mode analyzes
using our analyzer and displays the results. The structures
change depending on the configured parameters. The
manual-edit mode assists in editing the grouping structure,
metrical structure, and time-span tree. It can be used to
edit the results of the automatic-analysis mode.

Figure 7. GTTM editor (automatic-analysis mode).

5 EXAMPLES OF ANALYSIS USING ATTA
We provide in the appendix all the expressions to implement
the ATTA, so that they may be helpful for those users who
intend to develop other systems. In this section we expati-
ate how to acquire the grouping structure by using ATTA.

5.1 Detection of low-level boundaries

Figure 8 is the result of applying the local-level grouping
rules, such as GPR1, 2a, 2b, 3a, 3d and 61. We calculate
the degree of low-level boundary Bi as the weighted sum-
mation on the local-level grouping rules results Di

GPR and
adjustable parameter SGPR j. The threshold Tlow-level decides

1 The GTTM define the GPR6 for large-level grouping rules. However,
we also include it for low-level grouping rules, as manual analyzing
results based on GTTM by musicology experts.

if there is a low-level boundary or not. In this case, seven
positions are over the threshold and five positions are ap-
plied to GPR1. Therefore, we can acquire five low-level
boundaries as shown with the arrows in Figure 8.

Tlow-level i0

1

iDi
GPR1

iDi
GPR2a

iDi
GPR2b

iDi
GPR3a

iDi
GPR3b

Bi

iDi
GPR3c

iDi
GPR3d

iDi
GPR6

Low-Level boundaries

adjustable
parameters

SGPR j

∑

Figure 8. Detection of low-level boundaries.

5.2 Detection of high-level boundaries

The hierarchical grouping structure is constructed in the
top-down method (Figure 9). First of all, consider a
whole score as a group and calculate the degree of high-
level boundary Di

high-level boundary. Then select the strong-
est boundary for the next level grouping boundary as
shown with the upward arrows in Figure 9. Finally iter-
ate while the group contains low-level boundaries.

…
Low-level boundaries

Calculate this way the degree of high-level boundary iteratively

i0

i

i

0

0

boundarylevelhigh
iD −

boundarylevelhigh
iD −

boundarylevelhigh
iD −

Time-span tree
adjustable
parameters

Grouping structure

Metrical Structure

Figure 9. Construction of hierarchical grouping structure .

6 EXPERIMENTAL RESULTS
We evaluated the performance of the music analyzer
using an F-measure, which is given by the weighted
harmonic mean of Precision P and Recall R,

RP
RPFmeasure +

×
×= 2 . (5)

This evaluation required us to prepare correct data of
a grouping structure, metrical structure, and time-span
tree. We collected a hundred pieces of 8-bar length,
monophonic, classical music pieces, and asked musicol-
ogy experts to manually analyze them faithfully with
regard to the GTTM, using the manual-edit mode of
Java GUI to assist in editing the grouping structure,

362

metrical structure, and time-span tree. Three other ex-
perts crosschecked these manually produced results.

To evaluate the baseline performance of our system,
we used the following default parameters: S rules=0.5,
Trules=0.5, Ws,=0.5 Wr =0.5, Wl=0.5, and σ=0.05.

In the current stage, the parameters are configured by
humans, because the optimal values of the parameters
depend on a piece of music. When a user changes the
parameters, the hierarchical structures change as a result
of the new analysis.

It took us an average of about 10 minutes per piece to
find the plausible tuning for the set of parameters (Table 1).
As a result of configuring the parameters, each F-measure
of our analyzer outperformed the baseline (Table 2).

7 CONCLUSION
We developed a music analyzing system called ATTA,
which derives the time-span tree of the GTTM. The fol-
lowing three points are the main results of this study.
- Proposed extended GTTM

We propose an extended GTTM for computer im-
plementation. The difficulty with the computer im-
plementation of GTTM has been designated, how-
ever no radical solutions have been proposed [17].
We re-formalized the rules using a numerical ex-
pression with adjustable parameters, so that it can
separate the definition and ambiguity from the ana-
lyzed material.

- Implemented ATTA on computer
We implemented an actual working system to ac-
quire the hierarchical grouping structure, metrical
structure, and time-span tree of music, based on the
GTTM. The ATTA automatically acquirers the time-
span tree by configuring the parameters without
manually analyzing by experts in musicology.

- Constructed a set of correct data
We made a set of one hundred correct data, which is
the greatest database of analyzed results from the
GTTM to date. We plan to exhibit this database in
the near future.

- Evaluated the performance of ATTA
Our experimental results showed that, as a result of
configuring the parameters, our music analyzer out-
performed the baseline F-measure. The set of pa-
rameters that was tuned for a certain family of music
pieces would possibly reflect the common features
of the family. Thus, the idealized parameter set for a
music family, if any, would expectedly analyze a
new piece correctly, priort to human analysis.

We plan to develop further systems, using time-span
trees and the results of the music analyzer, for other
musical tasks, such as searching, harmonizing, voicing,
and ad-lib to indicate the effectiveness of implementing
the GTTM to provide music knowledge.

REFERENCES
[1] Lerdahl, F., and Jackendoff, R. A Generative Theory

of Tonal Music. MIT Press, Cambridge, 1983.

[2] Cooper, G., and Meyer, L. B. The Rhythmic Structure
of Music. The University of Chicago Press, 1960.

[3] Narmour, E. The Analysis and Cognition of Basic
Melodic Structure. The University of Chicago Press,
1990.

[4] Temperley, D. The Congnition of Basic Musical
Structures. MIT press, Cambridge, 2001.

[5] Hirata, K., and Matsuda, S. Interactive Music
Summarization based on Generative Theory of
Tonal Music. Journal of New Music Research, 32:2,

Table 2. F-measure for our method.

Grouping Structure Analyzer Metrical Structure Analyzer Time-Span Tree Analyzer

Melodies

Baseline
performance

Our method
with Configured
parameters

Baseline
performance

Our method
with Configured
parameters

Baseline
performance

Our method
with Configured
parameters

1. Moments musicaux
2. Wiegenlied
3. Traumerei
4. An die Freude
5. Barcarolle

0.18
0.76
0.60
0.12
0.04

:

0.56
1.00
0.87
0.73
0.54

:

0.95
0.83
0.76
0.95
0.72

:

1.00
0.85
1.00
1.00
0.79

:

0.71
0.54
0.50
0.22
0.24

:

0.84
0.69
0.63
0.48
0.60

:
Total (100 melodies) 0.46 0.77 0.84 0.90 0.44 0.60

 Parameters Description
SGPR j The strength of each grouping preference rule. j= (2a, 2b, 3a, 3b, 3c, 3d, 4, 5, 6)
σ The standard deviation of a normal distribution for GPR5.
Ws The priority to one end of a parallel segment compared with the start of a parallel segment.
Wr The priority to the same rhythm compared with the same register in parallel segments.
Wl The priority to large parallel segments.
TGPR4 The value of the threshold that decides whether GPRs 2 and 3 are relatively pronounced or not.

Grouping structure

Tlow-level The value of the threshold that decides whether transition i is a low-level boundary or not.
SMPR j The strength of each metrical preference rule. j= (1,2,3,4,5a, 5b, 5c, 5d, 5e ,10)
Wr The priority to the same rhythm compared with the same register in parallel groups.

Metrical structure

TMPR j The value of the threshold that decides whether or not each rule is applicable. j =(4, 5a, 5b, 5c)
Time-span tree STSRPR j The strength of each time-span tree preference rule. j= (1, 3a, 3b, 4, 8, 9)

Table 1. Adjustable parameters.

363

165-177, 2003.

[6] Todd, N. A Model of Expressive Timing in Tonal
Music. Musical Perception, 3:1, 33-58, 1985.

[7] Widmer, G. ''Understanding and Learning Musical
Expression'', Proceedings of International Computer
Music Conference, pp. 268-275, 1993.

[8] Hirata, K., and Hiraga, R. ''Ha-Hi-Hun plays
Chopin’s Etude'', Working Notes of IJCAI-03
Workshop on Methods for Automatic Music
Performance and their Applications in a Public
Rendering Contest, pp. 72-73, 2003.

[9] Hirata, K., and Matsuda, S. ''Annotated Music for
Retrieval, Reproduction, and Sharing'', Proceedings
of International Computer Music Conference, pp.
584-587, 2004.

[10] Ida, K., Hirata, K., and Tojo, S. '' The Attempt of
the Automatic Analysis of the Grouping Structure
and Metrical Structure based on GTTM'',
Proceedings of International Computer Music
Conference, SIG Technical Report, 2001(42):49-54,
2001 (in Japanese).

[11] Touyou, T., Hirata, K., Tojo, S., and Satoh, K. ''
Improvement of Grouping Rule Application in
Implementing GTTM'', Proceedings of International
Computer Music Conference, SIG Technical Report,
2002(47):121-126, 2002 (in Japanese).

[12] Nord, T. A. Toward Theoretical Verification:
Developing a Computer Model of Lerdahl and
Jackendoff’s Generative Theory of Tonal Music.
Ph.D. Thesis, The University of Wisconsin,
Madison, 1992.

[13] Hewlett, W. B. ed. Melodic Similarity Concepts,
Procedures, and Applications, Computing in
Musicology 11, The MIT press, Cambridge, 1998.

[14] Recordare LLC. MusicXML 1.0 Tutorial.
http://www. recordare.com/xml/musicxml-
tutorial.pdf., 2004.

[15] W3C. XML Pointer Language (XPointer).
http://www.w3.org/TR/xptr/, 2002.

[16] W3C. XML Linking Language (XLink) Version
1.0. http://www.w3.org/TR/xlink/, 2001.

[17] Heikki, V. Lerdahl and Jackendoff Revisited.
http://www.cc.jyu.fi/~heivalko/articles/lehr_jack.htm.

Appendix 1: Grouping Structure analyzer
Step 1: Calculation of basic parameters

Six basic parameters for note transition i are calculated
from MusicXML: resti (interval between current offset
and next onset), ioii (inter-onset intervals), regii (pitch
intervals), leni (subtraction of duration), dyni (subtraction
of dynamics), and arti (subtraction of ratio between dura-
tion of performed note and proper duration of the note).

Step2: Application of GPR
GPR1 (Alternative form)

⎩
⎨
⎧ ≥≤

= +

 lse 0
 BB 1 1i1-i GPR1

e
BBand

D ii
i ,

(6)

⎟
⎠
⎟
⎞

⎜⎜
⎝

⎛
××= ∑∑

=
′′

=)6,3,3,3,3,2,2(

)6,3,3,3,3,2,2(

 max
dcbabaj

jGPRjGPR
iidcbabaj

jGPRjGPR
ii SDSDB

where

.
GPR2a (Slur/Rest)

⎩
⎨
⎧ ><

= +−

lsee
restrest and restrest

D iiiiGPR2a
i 0

1 11

(7)

GPR2b (Attack-Point)

⎩
⎨
⎧ ><

= +−

lsee
ioioii and ioioii

D iiiiGPR2b
i 0

1 11

(8)

GPR3a (Register)

⎩
⎨
⎧ ><

= +−

lsee
 regi regi and regiregi

D iiii GPR3a
i 0

1 11

 (9)

GPR3b (Dynamics)

⎩
⎨
⎧ =≠=

= +−

lsee
dyn and 0dyn and dyn

D iiiGPR3b
i 0

001 11

(10)

GPR3c (Articulation)

⎩
⎨
⎧ =≠=

= +−

lse e
 and arti and artiarti

D iii
i 0

000 1 11GPR3c (11)

GPR3d (Length)

⎩
⎨
⎧ =≠=

= +−

lse 0
0len and 0len and 0len 1 11GPR3d

e
D iii

i
 (12)

GPR4 (Intensification)
()

⎩
⎨
⎧ >

=
 lse 0

 P,P,P,P,Pmax 1

4arti
i

dyn
i

regist
i

ioi
i

rest
i GPR4

e
T

D
GPR

i
 (13)

 artiarti P ,

lse 0

 0regi regiregi
P

 , dyndyn P , P , restrest P

1

1
i

arti
i

1

1

1

1
iregist

i

1

1
i

dyn
i

1

1
i

ioi
i

1

1
i

rest
i

∑∑∑

∑∑∑

+

−=

+

−=

+

−=

+

−=

+

−=

+

−=

=
⎪
⎩

⎪
⎨

⎧
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>

=

===

i

ij
j

i

ij
j

i

ij
j

i

ij
j

i

ij
j

i

ij
j

e

ioiioi

GPR5 (Symmetry)

where

.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∑−∑−=

==

2
2

GPR5 22exp σ
end

startj
j

i

startj
ji ioiioiD

,
 (14)

start : start transiton of a group.
where

end : end transition of a group.
GPR6 (Parallelism)

()

()
∑∑

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=×+−×

=×

=−×

=
j r

j i

j i s
end

r j is
start

r j i

j is
 end

r j i

j is
start

r j i

GPR6
i

m

m WGW G

m WG

 m W G

D

s0

t1

e

b1

 ,

 (15)

where
division : duration of a quarter note.
r : length of parallel segments based on the division of a quarter note.

lW
r

r r-jq r-iq

r r-jq r-iqlW
r

r r-jq r-iq

r r-jq r-iqend
j i

lW
r

r jq iq

r jq iqlW
r

r jq iq

r jq iqstart
j i

rW
z

y
rW

y

z
G

rW
z

y
rW

y

z
G

++

++

××+×−×=

××+×−×=

11

11

)1(

)1(

()integer Gausian divisionioiq
i

k
ki :][

1
⎥
⎦

⎤
⎢
⎣

⎡= ∑
=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≠≠≠≠

≠≠==

==≠≠

=
++

++

++

 lsee s

qq andqq and qq andqq t

 qq andqq and qq andqq e

qq andqq and qq andqq

m
 1jj 1ii 1-jj 1-ii

 1jj 1ii 1-jj 1-ii

 1jj 1ii 1-jj 1-ii

j i

b

∑
⎩
⎨
⎧ +≤≤

=
j

ijji
r iq

lsee 0

rqq and qq
 x

1

364

()
∑∑

∑∑

⎪
⎩

⎪
⎨

⎧
−=×−

= ==
k l

l

g
g

k

g
gji

r jq iq

lsee

ioiioidivisionqq
y

0

1
11

()
∑∑

∑∑

⎪
⎩

⎪
⎨

⎧ =−=×−
= ==

k l

ji
l

g
g

k

g
gji

r jq iq

lsee

regiregi and ioiioidivisionqq
z

0

1
11

Step3: Detection of low-level boundaries
The degree of the low-level boundary Di

low-level boundary
is expressed as follows.

⎪⎩

⎪
⎨
⎧ =>

=
−

else
D and TB D

 GPR
i

levellow
iboundary level-low

i 0
11 1

(16)

Step4: Detection of high-level boundaries
A group that contains a local boundary detected itera-

tively by the next level boundary i is calculated as follows. ˆ
 (17)

boundarylevelhigh
i

i
Di argmaxˆ −=

∑

=

−− ××=
)6,5,4,33,3,3,2,2(

dcbabaj

jGPRjGPR
i

boundarylevellow
i

boundarylevelhigh
i SDDD

Appendix 2: Metrical Structure analyzer
Step1: Calculation of basic parameters

Calculating from MusicXML and GroupingXML
five basic parameters of a note form beat i: veloi (veloc-
ity), valui (length of note), voli (duration of dynamic),
sluri (length of slur), and numi (pitch). µvelo, µvalu, µvol,
µslur, and µnum are the average of the basic parameters.

Step2: Application of MPR
MPR1 (Parallelism)

()
⎪⎩

⎪
⎨
⎧ >−×+×

=
 lsee

TW
y
zW

x
y D

MPR1
r

k i

k i
r

k i

k i
MPR1
k i

0

11

,
(18)

i : beginning of a group start

i end : ending of a group

∑∑
=′ ′

′

=′ ′

′

⎩
⎨
⎧

=
>

+
⎩
⎨
⎧

=
>

=
endk

startkk k

k
endi

startii i

i
k i velo

velo
velo
velo

 x
00
01

00
01

∑
=′

+′+

⎩
⎨
⎧ >>

=
endi

startii

iiki
k i lsee

velo and velo
 y

0
001

∑
=′

−′+−′+′′

⎩
⎨
⎧ ==>

=
endi

startii

iik1-iiki1-ii
k i lsee

num num and numnum and velo
 z

0
01

MPR2 (Strong beat early)
() ()start end end MPR2

i iiiiD −−= (19)
MPR3 (Event)

⎩
⎨
⎧

=
>

=
00
01

i

iMPR3
i velo

velo
D

(20)

MPR4 (Stress)

⎪⎩

⎪
⎨
⎧ ××>

=
 lsee

T2velo D
MPR

veloi MPR4
i 0

1 4µ

 (21)

MPR5a (Long Pitch-Event)

⎪⎩

⎪
⎨
⎧ ××>

=
 lsee

T2valu D
aMPR

valuiMPR5a
i 0

1 5µ

(22)

MPR5b (Long Duration of Dynamic)

⎪⎩

⎪
⎨
⎧ ××>

=
 lsee

T2vol D
bMPR

voliMPR5b
i 0

1 5µ

(23)

MPR5c (Long Slur)

⎪⎩

⎪
⎨
⎧ ××>

=
 lsee

T2 slur D
cMPR

sluriMPR5c
i 0

1 5µ (24)

MPR5d (Repetition of an Articulation Pattern)

⎪⎩

⎪
⎨
⎧ ==

= +

 lsee
1D and 1D D

MPR5a
i

MPR5a
iMPR5d

i 0
1 1

(25)

MPR5e (Pitch Repetition)

⎩
⎨
⎧

≠
=

=
+

+

1ii

1iiMPR5e
i numnum

numnum
D

0
1

(26)

Step3: Calculation of Low-level beat strength

Low-level beat strength is calculated by weighted
summation of Di

MPR j (=1,2,3,4,5a,5b,5c,5d,5e).

∑
⎪⎩

⎪
⎨
⎧

=
=×

+=
k

MPR1
k i

MPR1
k i

MPR1
k

i
metrical level-low

i D
D SBBD

00
1

,
(27)

∑

=
×=
 edcbaj

j MPRj MPR
ii SDB

)5,5,5,5,5,4,3,2(.

where

Step4: Acquisition of hierarchical metrical structure
When the current structure contains more than one

beat, the next level structure m is calculated as follows: ˆ
where ()

()∑
⎪
⎩

⎪
⎨

⎧

=×
=

=
= i

MPR10metrical level-low
i

metrical level-low
i

m else
3 mod m-i SD
2 mod m-i D

 argmaxm
0

1
0

ˆ
)5,4,3,2,1(

(28)

 .

Appendix 3: Time-span tree analyzer
Step1: Calculation of basic parameters

Four basic parameters of the current head (abstract-
ing note or non-abstracting note) i are calculated: resti
(interval between current head’s offset and next head’s
onset), ioii (inter onset intervals of heads), doti (number
of metrical dots), and pitchi (pitch).

+

Step2: Application of TSRPR
TSRPR1 (Metrical Position)

j
j

i
TSRPR1
i dotdotD max=

(29)

TSRPR3a (Higher Melodic Pitch) where

jjii pitchpitchD maxTSRPR3a = (30)

TSRPR3b (Lower Bass Pitch)

jjii pitchpitchD max1TSRPR3b −= (31)

TSRPR4 (Parallelism)

⎩
⎨
⎧ ===

= ++−

 lsee
ioiioi ,ioiioi ,ioiioi

D k1ikik1-iTSRPR4
k i 0

1 11
(32)

. TSRPR8 (Structural Beginning)

⎪⎩

⎪
⎨
⎧ ==

else
ii D

start
TSRPR8
i 0

1 (33)

TSRPR9 (Structural Ending)

⎪⎩

⎪
⎨
⎧ ==

else
ii D

end
TSRPR9
i 0

1 (34)

Step3: Calculation of head strength
The strength of a head is calculated by weighted

summation of Di
TSRPR j (=1, 3a, 3b, 4, 8, 9).

∑
⎪⎩

⎪
⎨
⎧

=
=×+=

k
TSRPR4
k i

TSRPR4
k i

TSRPR4
k

i
span-time

i D
D SBBD

00
1

, (35)
∑

=

×=
)9,8,3,3,1(

baj

jTSRPRjTSRPR
ii SDB .

 where

Step4: Acquisition of next level heads
When a time-span contains more than one head i and

j, the next level head h is calculated as follows: ˆ

⎪⎩

⎪
⎨
⎧ ≥

=
lsee j

DD i
h

span-time
j

span-time
iˆ

.
(36)

365

