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ABSTRACT 
This paper describes a music analyzing system called the 
automatic time-span tree analyzer (ATTA), which we 
have developed. The ATTA derives a time-span tree that 
assigns a hierarchy of 'structural importance' to the notes 
of a piece of music based on the generative theory of 
tonal music (GTTM). Although the time-span tree has 
been applied with music summarization and collabora-
tive music creation systems, these systems use time-span 
trees manually analyzed by experts in musicology. Pre-
vious systems based on GTTM cannot acquire a time-
span tree without manual application of most of the rules, 
because GTTM does not resolve much of the ambiguity 
that exists with the application of the rules. To solve this 
problem, we propose a novel computational model of the 
GTTM that re-formalizes the rules with computer im-
plementation. The main advantage of our approach is 
that we can introduce adjustable parameters, which en-
ables us to assign priority to the rules. Our analyzer 
automatically acquires time-span trees by configuring 
the parameters that cover 26 rules out of 36 GTTM rules 
for constructing a time-span tree. Experimental results 
showed that after these parameters were tuned, our 
method outperformed a baseline performance. We hope 
to distribute the time-span tree as the content for various 
musical tasks, such as searching and arranging music. 
 
Keywords: ATTA, Generative Theory of Tonal Music 
(GTTM), time-span tree, grouping structure, metrical 
structure, musical knowledge, knowledge acquisition.  

1 INTRODUCTION 
We propose a method for implementing a music theory 
called Generative Theory of Tonal Music (GTTM) [1]. 
It is difficult for those who are not musical experts to 
manipulate music, because commercial music se-
quence software today only operates on the surface 
structure of music, such as the notes, rests, and chords. 

Our goal is to create a system that will enable a musical 
novice to manipulate a piece of music, which is an am-
biguous and subjective media, according to the user's in-
tentions, by implementing the musical knowledge of mu-
sicians.  Our first step was to attempt to implement the 
GTTM, which analyses the meaning of a piece of music 
and interprets the implicit intentions of the composer. 

   Musical theory provides us with the methodologies 
for analyzing and transcribing musical knowledge, ex-
periences, and skills from a musician's way of thinking. 
Our concern is whether or not the concepts necessary for 
music analysis are sufficiently externalized in musical 
theory. We consider the GTTM to be the most promis-
ing theory among the many that have been proposed 
[2–4], in terms of its ability to formalize musical 
knowledge, because the GTTM captures the aspects of 
the musical phenomena based on the Gestalt occurring 
in music and is presented with relatively rigid rules. 

The time-span tree provides a summarization of a 
piece of music, which can be used as the representation 
of a search, by analyzing the results from the GTTM, re-
sulting in a music retrieval system [5]. It can also be used 
for performance rendering [6-8] and reproducing music 
[9]. These systems enable users to manipulate music us-
ing a time-span tree, disregarding the surface structure of 
the music. However, the time-span trees in these systems 
need to be manually analyzed by experts in musicology.  

   The biggest problem with computer implementation 
of the GTTM is that musical theories, including GTTM, 
are ambiguous, because music interpretation is tacit and 
subjective. Beside that most of the musical theories are 
presented for humans, without taking into consideration 
computer logic. Attempts have been made to implement 
several rules of the GTTM, but when these rules conflict 
we could not adequately resolve the priority in multiple 
rules [10, 11]. On the other hand, the computer model of 
the GTTM [12] could produce a time-span tree, but it re-
quired manual application of most of the rules. 

   To overcome the ambiguity of the GTTM rules, we 
propose an extended GTTM that re-formalizes the 
rules and establishes an algorithm for acquiring a time-
span tree by numerical expressions. In the expressions, 
we introduce adjustable parameters for controlling 
tacitness, ambiguity, and subjectiveness. The extended 
GTTM now covers 26 rules out of 36 GTTM rules for 
constructing a time-span tree. We implemented a time-
span analyzer, called ATTA, based on the extended 
GTTM in Perl. User can acquire the time-span tree by 
using ATTA via CGI application on the Internet. 

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full 
citation on the first page. 
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This paper is organized in the following way. We 
present the problem of applying GTTM rules in Sec-
tion 2, propose extended GTTM in Section 3, describe 
the time-span analyzer and it’s examples in Section 4 
and 5, and present experimental results and conclusion 
in Sections 6 and 7. Lastly, we provide in the appendix 
all the expressions to implement the GTTM analyzer. 

2 INTRODUCTION OF GTTM AND ITS 
PROBLEMS 

The GTTM is composed of four modules, each of which 
assigns a separate structural description to a listener’s un-
derstanding of a piece of music. These four modules out-
put a grouping structure, a metrical structure, a time-span 
tree, and a prolongational tree, respectively (Figure 1). 

…
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ ・ ・ ・ ・ ・ ・・ ・ ・ ・・ ・・

Time-span tree

Metrical structure
Grouping structure  

Figure 1. Grouping structure, Metrical structure, 
and Time-span tree. 
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＾＾ ＾ ＾The grouping structure is intended to formalize the 
intuitive belief that tonal music is organized into groups 
that are in turn composed of subgroups. These groups 
are graphically presented as several levels of arcs below 
a music staff. The metrical structure describes the 
rhythmical hierarchy of the piece by identifying the po-
sition of strong beats at the levels of a quarter note, half 
note, a measure, two measures, four measures, and so 
on. Strong beats are illustrated as several levels of dots 
below the musical staff. The time-span tree is a binary 
tree, which is a hierarchical structure describing the 
relative structural importance of notes that differentiate 
the essential parts of the melody from the ornamentation. 
For example the left-hand side of Figure 2 depicts a 
simple melody and its tree. The time-span (designated 
as <--->) is represented by a single note, called a head, 
which is designated here as “C4”. 

AbstractingInstantiating

head
C4 C4

⊂−
 

 
 
 
 

 

Figure 2. Subsumption relation of melodies. 

 There are two types of rules in GTTM, i.e., “well-
formedness rules” and “preference rules”. Well-
formedness rules are the necessary conditions for the 
assignment of a structure and the restrictions on the  
structures. When more than one structure satisfies the 
well-formedness rules, the preference rules indicate the 
superiority of one structure over another.  

In this section, we specify the problems with the 
GTTM rules in terms of computer implementation. 

2.1 Ambiguous concepts defining preference rules 

The GTTM uses some undefined words, causing ambi-
guities in the analysis. For example, the GTTM has rules 
for selecting proper structures when discovering similar 
melodies (called parallelism), but does not have the defi-
nition of similarity itself.  

To solve this problem we attempted to formalize the cri-
teria for deciding whether each rule is applicable or not. 

2.2 Conflict between preference rules 

The conflict between rules often occurs when applying 
the rules and results in ambiguities in the analysis be-
cause there is no strict order for applying the preference 
rules. Figure 3 shows a simple example of the conflict 
between the grouping preference rules (GPR). GPR3a 
(Register) is applied between notes 3 and 4 and GPR6 
(Parallelism) is applied between notes 4 and 5. A 
boundary cannot be perceived at both 3-4 and 4-5, be-
cause GPR1 (alternative form) strongly prefers that note 
4, by itself, cannot form a group.  

To solve this problem we introduced adjustable pa-
rameters that enable us to control the strength of each rule. 

 
 

 

Figure 3. Simple example of conflict between rules. 

2.3 Few mentions to how to calculate hierarchical 
structures 

The GTTM does not define a valid procedure for acquir-
ing the hierarchical structure. It is not realistic to first 
make every structure satisfy the well-formedness rules 
and then select the optimal structure. For example, only 
a ten note score provides 185794560 (= !9 ) kinds of 
time-span trees. 

 　92 ×

To solve this problem we developed an algorithm for 
acquiring the hierarchical structure, taking into consid-
eration some of the examples in the GTTM. 

2.4 Less precise explanation of feedback link 

The GTTM has some feedback links from higher level 
structures to lower level ones, e.g. GPR7 (time-span and 
prolongational stability) prefers a grouping structure 
that results in a more stable time-span and/or prolonga-
tion reductions. However, no detailed description and 
only a few examples are given. 

3 EXTENDED GTTM 
To overcome the problems with computer implementa-
tion of the GTTM, we propose a computational model of 
the GTTM called the extended GTTM, which covers 26 
rules out of 36 GTTM rules for constructing time-span 
tree. The remaining 4 rules are for feedback links and 
another 6 rules are for homophony. In the current stage, 
we restrict the music structure to monophony to cor-
rectly evaluate the performance of each rule. 
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     In this section we particularize our proposed exten-
sion of the GTTM for computer implementation. The 
policies are equally applied to the three analyses, which 
are the grouping structure, metrical structure, and Time-
span reduction analyses. 

3.1 Re-formalization of rules 

In order to deal with the preference rules on a computer, 
we have expressed the rules into numerical styles. Nu-
meric descriptions of the rules allow to quantitatively 
combine the result of each rule application. 

We expressed the degree of application of the rule as a 
numerical function Di

rule which output 1 (applicable) or 0 
(not applicable) if the rule is clearly applicable or not. For 
example, GPR2b (Attack-Point) states that a relatively 
greater interval of time between attack points initiates a 
grouping boundary that can be expressed as follows: 

⎩
⎨
⎧ ><

= +−

lsee         
ioioii and ioioii          

D iiiiGPR2b
i 0

1 11  
,   (1) 

i      : transition of note 
ioi i  : inter onset intervals. 
 

A numerical function Di
rule outputs between 1 (applica-

ble) and 0 (not applicable) if the rule is not clearly ap-
plicable or not. For example, time-span reduction pref-
erence rule 3a (TSRPR3a) that prefers that a higher me-
lodic pitch is used as the head of a time-span can be 
expressed as follow: 

j
j

i
TSRPR3
i pitchpitchD max= ,                                 (2) 

i         : head 
pitch i : pitch (note number of MIDI). 

3.2 Refinement of ambiguous concepts 

As described above, the GTTM uses some undefined 
concepts that provide ambiguousness in analysis. The 
concepts are ambiguous, with no unique definition. For 
example, the concept of a similar melody has a lot of 
plausible definitions [13], but no best one. 

Here, we attempted to formalize concepts based on 
the following two policies, which we esteem. 

1) To define intuitionally and comprehensively. 
2) Equipment adjustable parameters for control 

of the ambiguity. 

3.2.1 Concept for symmetry 

GPR5 is the rule for symmetry in a grouping structure. It 
prefers grouping analyses that most closely approach the 
ideal subdivision of groups into two parts of equal length.  
    We define the degree of symmetry Di

GPR5 so that there 
is a preference to subdivide a group into two parts of equal 
length. Here, we use a normal distribution with the stan-
dard deviation σ as the degree of symmetry, as follows.  
 

         (3) 
where 
   start : start transition of group. 
   end  : end transition of a group. 

The σ is an adjustable parameter for a user to control the 
degree of symmetry. In Figure 4a is the degree of symme-
try corresponding to grouping level a. If the next level 
boundary is found in the middle of the group by applying 
all grouping rules, the next grouping level’s the degree of 
symmetry will be like the one shown in Figure 4b. 

start end startgrouping level a
start end startgrouping level b end start

Di
GPR5

[time]0

Di
GPR5

[time]0

（a）

（b）

…

1

1

 
Figure 4. Examples of symmetry level. 

3.2.2 Concept for parallelism where 
GPR6, MPR1, and TSRPR4 rules for parallelism are as 
follows.  
GPR6: Where two or more segments of the music can 
be construed as parallel, they preferably form parallel 
parts of groups. 
MPR1: Where two or more groups or parts of groups 
can be construed as parallel, they preferably form paral-
lel metrical structures. 
TSRPR4: If two of more time-spans can be construed 
as motivically and/or rhythmically parallel, preferably 
assign them parallel heads. 

where 

We formalized the concept of parallelism and defined 
the degree of parallel in each rule, because the target 
structures of the rules are different.  

In GPR6, we focused on the parallelism of the seg-
ments. We introduced the degree of parallel for GPR6 
Di

GPR6, which indicates a high value at the start and end 
of the parallel part (Figure 5). The degree of parallel  
Di

GPR6 was calculated by searching all the segments 
throughout the score. The length of the segments is 
from a beat to a half of the score by every beat.  

GPR6 has three adjustable parameters for controlling 
the degree of parallel: Wr (priority to the same rhythm 
compared with the same register in parallel segments), 
Ws (priority to one end of a parallel segment compared 
with the start of the parallel segment), and Wl (priority 
to large parallel segments) (0≦Wr, Ws , Wl ≦1). By 
using these parameters, a user can easily find and con-
figure the parallel segment. 

Di
GPR6

i0

…

 
⎭

Figure 5. Example of the degree of parallel. 
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 In MPR1, we focused on the parallelism of beat in 
groups. We introduced the degree of parallel for MPR1 Di 

k
MPR1, which is calculated by searching all the groups. 

MPR1 has two adjustable parameters for controlling the 
degree of parallel: Wr (weight of priority of the same 
rhythm compared with the same register in parallel 
groups), and TMPR1 (threshold that decides whether beat i 
and beat k are parallel (Di k

MPR1= 1) or not (Di k
MPR1= 0)). 

In TSRPR4, we focused on the parallelism of time-
spans, which are generated by grouping structure and 
metrical structure. We introduced the degree of parallel 
for TSRPR4 Di k

TSRPR4, which is calculated by searching 
all the time-spans. TSRPR1 has no adjustable parame-
ters for controlling the degree of parallel. 

3.3 Resolving the preference rule confliction by pri-
oritizing rules 

We introduced adjustable parameters, Srule, for controlling 
the strength of the GTTM rules. By using these parameters, 
we can acquire the local-level strength of bound-
ary/beat/head. For example, as a result of applying the lo-
cal-level grouping rules, we can acquire low-level grouping 
boundaries as weighted summations on the grouping rules 
results Di

GPR and adjustable parameter SGPR as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××= ∑∑

=
′′

=  )6,3,3,3,3,2,2(

  

  )6,3,3,3,3,2,2(

    max
dcbabaj

jGPRjGPR
iidcbabaj

jGPRjGPR
ii SDSDB .

(4) 

3.4 Top-down algorithm for calculating hierarchical 
structures 

We introduced the top-down process for acquiring the 
structures. The hierarchal structure is constructed by 
calculating the local strength and choosing the next 
level structure. 
-   Acquisition of grouping structure 

The grouping structure is constructed in the following way. 
(1) First, consider the whole piece of music as a group.  
(2) Then, calculate local-level boundary strengths and 

detect low-level boundaries. 
(3) Next, select the strongest boundary and divide the 

group at the boundary. 
(4) Finally, iterate (3) while the local boundaries are 

found at the group. 
-   Acquisition of metrical structure 

The metrical structure is constructed in the following way. 
(1) First, consider all the beats as a lowest (global) level 

metrical structure.  
(2) Then, calculate the local-level metrical strength. 
(3) Next, select the strongest metrical structure from 

possible structures. 
(4) Finally, iterate (2) and (3) while the current struc-

tures have more than one beat. 
-   Acquisition of time-span tree 

The time-span tree is constructed in the following way. 
(1) First, consider all the notes as a head.  
(2) Then, calculate the local-level head strength. 
(3) Next, select the next level head from each time-span. 
(4) Finally, iterate (2) and (3) while the time-span con-

tains more than one head.  

4 STRUCTURE OF ATTA 
We implemented the extended GTTM described above 
on the computer that we call ATTA. Figure 6 is the over-
view of the ATTA which consists of a grouping struc-
ture analyzer, a metrical structure analyzer, and a time-
span tree analyzer. ATTA has three distinctive features, 
an XML-based data structure, its implemented in Perl, 
and has a Java-based GUI. 

MusicXML

Low-Level boundary

[time]
boundary 
strength

Detection of 
low-level boundary

Detection of
high-level boundary

GroupingXML

Divide by top down

Applying GPR1, 2, 3, 6 

Applying GPR1, 2, 3, 4, 5, 6 

(           )
Bi

Calculation of low-
level beat strength

Choosing next
level structure

MetricalXML

[time]
Di

low-level

(strength of beat) Applying MPR1,2,3,4,5

Current 
structure

Choice of 
next level 
structures

Choosing with applying MPR10

1ˆ =m
2ˆ =m
3ˆ =m
4ˆ =m
5ˆ =m

YesNo
Contains more than one beat

Calculation of 
head strength

Choosing next
level structure

Di
time-span

(strength of head)Applying TSRPR1,3,4,8,9

Current 
structure

Next level 
structure

Time-spanXML

YesNo
Contains more than one head

YesNo
Contains more than one boundary

Grouping Structure Grouping Structure 
AnalyzerAnalyzer

Metrical Structure Metrical Structure 
AnalyzerAnalyzer

TimeTime--span tree span tree 
AnalyzerAnalyzer

 
Figure 6. Processing flow of ATTA. 

4.1 XML based data structure 

We use an XML format for all the input and output data 
structures of the ATTA. Each analyzer of the ATTA 
works independently but are integrated by the XML-
based data structure. 

As a primary input format, we chose MusicXML [14] 
because it provides a common ‘interlingua’ for music no-
tation, analysis, retrieval, and other applications. We de-
signed GroupingXML, MetricalXML, and Time-
spanXML as the export formats for our analyzer. The 
XML format is extremely qualified to express the hierar-
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chical grouping structures, metrical structures, and time-
span trees. Note that note elements in GroupingXML, Met-
ricalXML, and Time-spanXML are connected to note ele-
ments in MusicXML, using Xpointer [15] and Xlink [16]. 

We expect that the distribution of a MusicXML or a 
SMF, together with a grouping structure, metrical struc-
ture, and time-span tree, is useful for various musical 
tasks such as searching and arranging. 

4.2 Implementation in Perl 

We implemented the ATTA in Perl so that using CGI 
allows it to be used through the internet (available at 
http://staff.aist.go.jp/m.hamanaka/atta/). We believe that 
the exhibition of this kind of resource is very important 
for the music researching community. ATTA is the first 
application for automatically acquiring time-span tree. 
We hope to benchmark the ATTA to other systems, 
which hereafter will be constructed.  

4.3 Java based GUI 

Although our analyzer implemented in Perl has a simple 
user interface, we also developed a graphical user inter-
face in Java called GTTM editor (Figure 7). The GTTM 
editor has two modes, the automatic analysis and man-
ual-edit modes. The automatic-analysis mode analyzes 
using our analyzer and displays the results. The structures 
change depending on the configured parameters. The 
manual-edit mode assists in editing the grouping structure, 
metrical structure, and time-span tree. It can be used to 
edit the results of the automatic-analysis mode. 

 
Figure 7. GTTM editor (automatic-analysis mode). 

5 EXAMPLES OF ANALYSIS USING ATTA 
We provide in the appendix all the expressions to implement 
the ATTA, so that they may be helpful for those users who 
intend to develop other systems. In this section we expati-
ate how to acquire the grouping structure by using ATTA. 

5.1 Detection of low-level boundaries  

Figure 8 is the result of applying the local-level grouping 
rules, such as GPR1, 2a, 2b, 3a, 3d and 61. We calculate 
the degree of low-level boundary Bi as the weighted sum-
mation on the local-level grouping rules results Di

GPR and 
adjustable parameter SGPR j. The threshold Tlow-level decides 
                                                           
1 The GTTM define the GPR6 for large-level grouping rules. However, 
we also include it for low-level grouping rules, as manual analyzing 
results based on GTTM by musicology experts. 

if there is a low-level boundary or not. In this case, seven 
positions are over the threshold and five positions are ap-
plied to GPR1. Therefore, we can acquire five low-level 
boundaries as shown with the arrows in Figure 8. 

Tlow-level i0

1

iDi
GPR1

iDi
GPR2a

iDi
GPR2b

iDi
GPR3a

iDi
GPR3b

Bi

iDi
GPR3c

iDi
GPR3d

iDi
GPR6

Low-Level boundaries

adjustable 
parameters

SGPR j

∑

 
Figure 8. Detection of low-level boundaries. 

5.2 Detection of high-level boundaries  

The hierarchical grouping structure is constructed in the 
top-down method (Figure 9). First of all, consider a 
whole score as a group and calculate the degree of high-
level boundary Di 

high-level boundary. Then select the strong-
est boundary for the next level grouping boundary as 
shown with the upward arrows in Figure 9. Finally iter-
ate while the group contains low-level boundaries. 

…
Low-level boundaries

Calculate this way the degree of high-level boundary iteratively

i0

i

i

0

0

boundarylevelhigh
iD   −

boundarylevelhigh
iD   −

boundarylevelhigh
iD   −

 

Time-span tree 
adjustable 
parameters 

Grouping structure 

Metrical Structure 

Figure 9. Construction of hierarchical grouping structure . 

6 EXPERIMENTAL RESULTS 
We evaluated the performance of the music analyzer 
using an F-measure, which is given by the weighted 
harmonic mean of Precision P and Recall R, 

RP
RPFmeasure +

×
×= 2  .                                                     (5) 

This evaluation required us to prepare correct data of 
a grouping structure, metrical structure, and time-span 
tree. We collected a hundred pieces of 8-bar length, 
monophonic, classical music pieces, and asked musicol-
ogy experts to manually analyze them faithfully with 
regard to the GTTM, using the manual-edit mode of 
Java GUI to assist in editing the grouping structure, 
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metrical structure, and time-span tree. Three other ex-
perts crosschecked these manually produced results. 

To evaluate the baseline performance of our system, 
we used the following default parameters: S rules=0.5, 
Trules=0.5,   Ws,=0.5 Wr =0.5, Wl=0.5, and σ=0.05. 

In the current stage, the parameters are configured by 
humans, because the optimal values of the parameters 
depend on a piece of music. When a user changes the 
parameters, the hierarchical structures change as a result 
of the new analysis.  

It took us an average of about 10 minutes per piece to 
find the plausible tuning for the set of parameters (Table 1). 
As a result of configuring the parameters, each F-measure 
of our analyzer outperformed the baseline (Table 2). 

7 CONCLUSION 
We developed a music analyzing system called ATTA, 
which derives the time-span tree of the GTTM. The fol-
lowing three points are the main results of this study. 
-    Proposed extended GTTM 

We propose an extended GTTM for computer im-
plementation. The difficulty with the computer im-
plementation of GTTM has been designated, how-
ever no radical solutions have been proposed [17]. 
We re-formalized the rules using a numerical ex-
pression with adjustable parameters, so that it can 
separate the definition and ambiguity from the ana-
lyzed material. 

-    Implemented ATTA on computer 
We implemented an actual working system to ac-
quire the hierarchical grouping structure, metrical 
structure, and time-span tree of music, based on the 
GTTM. The ATTA automatically acquirers the time-
span tree by configuring the parameters without 
manually analyzing by experts in musicology. 

-    Constructed a set of correct data 
We made a set of one hundred correct data, which is 
the greatest database of analyzed results from the 
GTTM to date. We plan to exhibit this database in 
the near future. 

-    Evaluated the performance of ATTA 
Our experimental results showed that, as a result of 
configuring the parameters, our music analyzer out-
performed the baseline F-measure. The set of pa-
rameters that was tuned for a certain family of music 
pieces would possibly reflect the common features 
of the family. Thus, the idealized parameter set for a 
music family, if any, would expectedly analyze a 
new piece correctly, priort to human analysis. 

We plan to develop further systems, using time-span 
trees and the results of the music analyzer, for other 
musical tasks, such as searching, harmonizing, voicing, 
and ad-lib to indicate the effectiveness of implementing 
the GTTM to provide music knowledge. 
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Table 2. F-measure for our method.

Grouping Structure Analyzer Metrical Structure Analyzer Time-Span Tree Analyzer  
 
Melodies 

Baseline  
performance 

Our method 
with Configured 
parameters 

Baseline  
performance 

Our method 
with Configured 
parameters 

Baseline  
performance 

Our method 
with Configured 
parameters 

1. Moments musicaux 
2. Wiegenlied 
3. Traumerei 
4. An die Freude 
5. Barcarolle 

0.18 
0.76 
0.60 
0.12 
0.04 

: 

0.56 
1.00 
0.87 
0.73 
0.54 

: 

0.95 
0.83 
0.76 
0.95 
0.72 

: 

1.00 
0.85 
1.00 
1.00 
0.79 

: 

0.71 
0.54 
0.50 
0.22 
0.24 

: 

0.84 
0.69 
0.63 
0.48 
0.60 

: 
Total (100 melodies) 0.46 0.77 0.84 0.90 0.44 0.60 

 Parameters Description 
SGPR j The strength of each grouping preference rule. j= (2a, 2b, 3a, 3b, 3c, 3d, 4, 5, 6) 
σ The standard deviation of a normal distribution for GPR5. 
Ws The priority to one end of a parallel segment compared with the start of a parallel segment. 
Wr The priority to the same rhythm compared with the same register in parallel segments. 
Wl The priority to large parallel segments. 
TGPR4 The value of the threshold that decides whether GPRs 2 and 3 are relatively pronounced or not. 

Grouping structure 

Tlow-level The value of the threshold that decides whether transition i is a low-level boundary or not. 
SMPR j The strength of each metrical preference rule. j= (1,2,3,4,5a, 5b, 5c, 5d, 5e ,10) 
Wr The priority to the same rhythm compared with the same register in parallel groups. 

Metrical structure 

TMPR j The value of the threshold that decides whether or not each rule is applicable. j =(4, 5a, 5b, 5c) 
Time-span tree STSRPR j The strength of each time-span tree preference rule. j= (1, 3a, 3b, 4, 8, 9) 
 

Table 1. Adjustable parameters.
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Appendix 1: Grouping Structure analyzer 
Step 1: Calculation of basic parameters 

Six basic parameters for note transition i are calculated 
from MusicXML: resti (interval between current offset 
and next onset), ioii (inter-onset intervals), regii (pitch 
intervals), leni (subtraction of duration), dyni (subtraction 
of dynamics), and arti (subtraction of ratio between dura-
tion of performed note and proper duration of the note). 

Step2: Application of GPR 
GPR1 (Alternative form) 
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start  :   start transiton of a group. 
where 

end   :   end transition of a group. 
GPR6 (Parallelism) 
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where 
division : duration of a quarter note. 
r : length of parallel segments based on the division of a quarter note. 
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Step3: Detection of low-level boundaries 
The degree of the low-level boundary  Di

low-level boundary 
is expressed as follows. 
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Step4: Detection of high-level boundaries 
A group that contains a local boundary detected itera-

tively by the next level boundary i   is calculated as follows. ˆ
                              (17) 
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Appendix 2: Metrical Structure analyzer 
Step1: Calculation of basic parameters 

Calculating from MusicXML and GroupingXML 
five basic parameters of a note form beat i: veloi (veloc-
ity), valui (length of note), voli (duration of dynamic), 
sluri (length of slur), and numi (pitch). µvelo, µvalu, µvol, 
µslur, and µnum are the average of the basic parameters. 

 
Step2: Application of MPR 
MPR1 (Parallelism) 
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i   : beginning of a group start

i end   : ending of a group 
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MPR2 (Strong beat early) 
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MPR4 (Stress) 
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MPR5a (Long Pitch-Event) 
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MPR5b (Long Duration of Dynamic) 
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MPR5c (Long Slur) 
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MPR5d (Repetition of an Articulation Pattern) 
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MPR5e (Pitch Repetition) 
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Step3: Calculation of Low-level beat strength 

Low-level beat strength is calculated by weighted 
summation of Di

MPR j (=1,2,3,4,5a,5b,5c,5d,5e). 
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where 

Step4: Acquisition of hierarchical metrical structure 
When the current structure contains more than one 

beat, the next level structure  m  is calculated as follows: ˆ
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Appendix 3: Time-span tree analyzer 
Step1: Calculation of basic parameters 

Four basic parameters of the current head (abstract-
ing note or non-abstracting note) i are calculated: resti 
(interval between current head’s offset and next head’s 
onset), ioii (inter onset intervals of heads), doti (number 
of metrical dots), and pitchi (pitch). 

+ 

Step2: Application of TSRPR 
TSRPR1 (Metrical Position) 
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TSRPR3a (Higher Melodic Pitch) where 
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TSRPR3b (Lower Bass Pitch) 
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. TSRPR8 (Structural Beginning) 
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Step3: Calculation of head strength 
The strength of a head is calculated by weighted 

summation of Di
TSRPR j (=1, 3a, 3b, 4, 8, 9). 
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Step4: Acquisition of next level heads 
When a time-span contains more than one head i and 

j, the next level head  h   is calculated as follows: ˆ
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