Article Reprinted From

JOURNAL OF NEW MUSIC RESEARCH

Volume 35, NO. 4, Pages 249-277, 2006

Implementing “A Generative Theory of Tonal Music”

By

Masatoshi Hamanaka, Keiji Hirata and Satoshi Tojo

Taylor & Francis
Tavior & Francia Grougs

4 Park Square, Milton Park, Abingdon
Oxfordshire, OX1 4RN, UK

Journal of New Music Research
2006, Vol. 35, No. 4, pp. 249277

% Routledge

Taylor & Frands Group

Implementing “A Generative Theory of Tonal Music”’'

Masatoshi Hamanaka', Keiji Hirata® and Satoshi Tojo’

'"University of Tsukuba, Japan; *NTT Communication Science Laboratories, Japan; *Japan Advanced Institute of

Science and Technology, Japan

Abstract

This paper proposes a music analysing system called the
automatic time-span tree analyser (ATTA). ATTA derives
a time-span tree that assigns a hierarchy of “structural
importance” to the notes of a piece of music based on the
generative theory of tonal music (GTTM). Although the
time-span tree has been applied in music summarization
and collaborative music creation systems, these systems use
time-span trees manually analysed by experts in musicol-
ogy. Current systems based on GTTM cannot acquire a
time-span tree without manual application of most of the
rules, since GTTM does not resolve much of the ambiguity
involved in the application of the rules. To solve this
problem, we propose a novel computational model of
GTTM that re-formalizes the rules through a computer
implementation. The main advantage of our approach is
that we can introduce adjustable parameters, which enables
us to assign priorities to the rules. Our analyser auto-
matically acquires time-span trees by configuring the
parameters that cover 17 out of 26 GTTM rules for
constructing a time-span tree. Experimental results show
that after these parameters were tuned, our method could
outperform a baseline performance. We hope to distribute
the time-span tree analyser as a tool for various musical
tasks, such as searching and arranging music.

1. Introduction

Musical activities reflect many aspects of human
intelligence. These activities encompass not only compo-
sition, arrangement, and performance but also listening,

dancing to music, and even selecting CDs at Amazon
or compiling playlists for your friends. The relevant
research fields include musicology, physiology, psychol-
ogy, artificial intelligence, and sociology.

Music theory, in particular, focuses on a piece written
on a score, gives us the methodology for analysing and
understanding a piece, and explains deep structure, musical
knowledge, experiences, and skills in a comprehensive way.
We believe that implementing music theory on a computer
would bring great benefits because it could provide a
theoretical basis for developing a support system for the
above musical activities. For instance, such advantages
include performance rendering (Todd, [985; Widmer,
1993; Hirata & Hiraga, 2003) and music summarization
for practical use when displaying the results of a music
information retrieval system (Hirata & Matsuda, 2003).

To get a music theory to operate on a computer,
however, we must overcome some widely recognized
fundamental difficulties. One is giving an ambiguous
concept a firm definition, and the other is supplementing
the lack of necessary concepts (externalization). For
example, we may easily decide whether two melodies are
similar to each other, but in general each of us likely
makes a different decision, and it is difficult to fully
explain why the melodies are similar. To write a program
that replicates a human checking melodic similarity, we
have to cope with the problem commonly known as
knowledge acquisition (Russell & Novig, 2002). Marsden
(2005) states this problem from a musicology point of
view as meeting the following requirements of a
representation system for structural music manipulation:

e Musical symbols, objects, and concepts are all well
defined; a new one is defined by predefined ones.

TAn earlier version of this paper won the Journal of New Music Distinguished Paper Award at the International Computer Music

Conference, 2005.

Correspondence: Masatoshi Hamanaka, Department of Intelligent [nteraction Technologies University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba, Ibaraki 305-8573, Japan. E-mail: hamanaka@iit.tsukuba.ac.jp

DOI: 10.1080/09298210701563238 © 2006 Taylor & Francis

250 Masatoshi Hamanaka et al.

e Musical symbols, objects, and concepts are all
grounded to relevant ones in the real world; there
must be a consistent, well-segmented correspondence
between musical symbols, objects, and concepts in a
representation system and those in the real world.

We think these requirements can play an important role
in overcoming the above difficulties and mechanizing
music theory.

Although many music theories have been proposed
(Cooper & Meyer, 1960, Schenker, 1979; Lerdahl &
Jackendoff, 1983; Narmour, 1990; Cope, 1995;
Temperley, 2001), each theory is differently motivated,
and the insight used as a starting point is different, as are
the fundamental concepts and models. Furthermore,
each theory is presented in a different description style;
for example, one is presented totally in a descriptive style
using sample scores, and another in a procedural style
showing program fragments. Therefore, to offer efficient
and precise definitions of the musical symbols, objects,
and concepts involved in defining similarity while still
satisfying the above requirements, we have to carefully
examine music theories for their potential to operate on a
computer and then select one as a starting point.

We believe that the Generative Theory of Tonal Music
(GTTM) (Lerdahl & Jackendoff, 1983) is the most
promising theory for mechanizing and developing a
support system, thanks to three of its features. The first is
the use of rules to describe the musical insight and
knowledge obtained by investigating in detail the musical
structures and relations occurring in a piece of music.
The rules of GTTM accumulate fundamental musical
phenomena and concepts, define the relations between
them, and prescribe the conditions to be satisfied as well
as the desired situation. Originally, Lerdahl and Jackend-
off employed the form of rules to express their results in a
manner that ensures human readability, since rules can
properly segment and organize musical introspection and
knowledge so that a human can easily understand them.
In addition, such rules can be translated into a computer
program due to the modularity of knowledge.

The second feature is that GTTM is designed to
consistently represent the multiple aspects of music in a
single framework. This feature is important in the sense
that when GTTM is executed in a mechanical way,
contradiction should be prevented as much as possible.
For instance, if we imagine a simple operation that splits
a melody, the condition of applying the split operation
may vary depending on the relevant musical structure.
Therefore, it is preferred that the splitting position of a
melody and that of an ornamented melody be essentially
identical. Unless a system of consistent operations in
terms of melody, rhythm, and harmony is developed, the
resulting splitting positions may be different.

The third feature is that GTTM has been developed
based on the concept of reduction. We believe that the

proper way of taking into account deep structures is to
adopt the concept of reduction (Selfridge-Field, 1998;
Hirata & Aoyagi, 2003). Reduction, in general, connects
an original element and its ornamented one (complicated
one), and it corresponds to an ““is-a” relation, the most
fundamental relation in knowledge representation. Ac-
cordingly, deep structure would emerge from the network
of concepts connected by relations involving ““is-a,” where
many knowledge representation techniques are available
(Russell & Novig, 2002). In contrast, conventional ap-
proaches to representing and comparing music mostly
focus on surface information and do not introduce the
“is-a” relation. Thus, they unfortunately cannot handle
deep structures or high-level musical knowledge properly.
Furthermore, Lerdahl and Jackendoff also recognized
the advantages of mechanizing GTTM to some extent:

Our theory cannot provide a computable procedure for
determining musical analyses. However, achieving comput-
ability in any meaningful way requires a much better under-
standing of many difficult musical and psychological issues
than exists at present. (Lerdahl & Jackendoff, 1983, p. 55)

We think that “many difficult musical and psychological
issues’” would encompass what we are trying to solve in
this paper.

In this work, we extend GTTM by full externalization
and parameterization (Section 3.3.1) and propose
exGTTM. This externalization in mechanizing GTTM
includes introducing an algorithm for generating a
hierarchical structure of the time-span tree in the mixed
manner of top-down and bottom-up. Such an algorithm
has not been presented for GTTM, and in fact it seems
that researchers have not even recognized the need for
this type of algorithm. The parameterization includes
introducing a parameter controlling the priorities of rules
to avoid a conflict among the rules as well as the
parameters for controlling the shape of the hierarchical
time-span tree. It has been suggested that such control
parameters are required in GTTM, but they have not
been explicitly presented. On the other hand, we restrict
GTTM and implement a subset of GTTM because
mechanization has priority over all others. For example
with regard to the restrictions, only a monophony is
handled, and harmony is not taken into account. We
totally sum up the detail on restrictions in Section 3.3,

Here, note that we distinguish two kinds of ambiguity
in music analysis: one involves music understanding by
humans, and the other concerns the representation of a
music theory. The former kind of ambiguity derives from
the ambiguity of music itself. The following is quoted
from the GTTM book:

In music, . . . grammaticality per se plays a far less important
role, since almost any passage of music is potentially vastly
ambiguous — it is much easier to construe music in a

Implementing A4 Generative Theory of Tonal Music" 251

multiplicity of ways. The reason for this is that music is not
tied down to specific meanings and functions, as language is.
In a sense, music is pure structure, to be “played with”
within certain bounds. The interesting musical issues usually
concern what is the most coherent or “preferred” way to
hear a passage. (Lerdahl & Jackendoff, 1983, p. 9)

For the latter type of ambiguity, related to GTTM, no
concept needed for mechanization has been presented, or
it has been presented only in an implicit way. Therefore,
due to the former kind of ambiguity, we assume there are
more than one correct result. We avoid the latter kind of
ambiguity as much as possible by full externalization and
parameterization.

The significance of full externalization and parame-
terization is twofold: precise controllability and cover-
age of the human results. Whenever we find a correct
result that exGTTM cannot generate, we introduce new
parameters to exGTTM and give them proper values so
that it can generate the correct result. In this way, we
repeatedly externalize and introduce new parameters
until we can obtain all of the results that humans
consider correct. In total, we have introduced 15
parameters for grouping-structure analysis, |8 for
metrical-structure analysis, and 13 for time-span reduc-
tion. It is eventually guaranteed that for every piece in a
given set of pieces, by assigning certain values to these
parameters, exGTTM can generate a correct analysis
result. In other words, exGTTM can precisely control
the analysis result by adjusting the parameter values,
thus covering all of the correct analysis results. We think
that toward a fully automatic GTTM analyser, full
externalization and parameterization is an important
intermediate step. Moreover, we think that full externa-
lization and parameterization are significant in light of
the testability of music theories. Temperley pointed this
out as follows:

If the parameters of the rules can be specified, the output of
the rule system for a given input can be determined in an
objective way, making the theory truly testable. (Temperley,
2001, p. 14)

The organization of the paper is as follows. In Section
2, we mention related works, and in Section 3, we briefly
describe music theory GTTM, discuss the problems and
how to solve them when implementing GTTM, and
propose exGTTM as an extension of GTTM. In Sections
4, 5 and 6, we present the detailed algorithms for
implementing the grouping-structure analyser, metrical-
structure analyser, and time-span tree analyser. In
Section 7, we explain the implemented system called
ATTA and its features, and in Section 8, we evaluate the
performance of the implemented system. Finally in
Section 9, we conclude with a summary and overview
of future work.

2. Previous work

Our primary concern is implementing a music theory. We
do not compare GTTM with other music theories on
their own merits, since musicological comparison is out
of the scope of this paper. The preference rule systems
(PRS) (Temperley, 2001) approach, along with its
practical implementation, the Melisma system of Sleator
and Temperley, is a pioneering work in implementing
music theory. PRS analyses music from six aspects:
meter, melodic phrase, counterpoint, pitch spelling,
harmony, and key. For cach analysis, Temperley presents
a set of well-formedness rules and the preference rules.
The former defines the possible structures considered
legal, while the latter chooses the optimal analysis out of
the possible ones, as GTTM described in Section 3.1. In
the following, we briefly describe the implementation
strategy of PRS and the Melisma system.

The Melisma system basically employs dynamic
programming to find the best-so-far partial analyses at
every intermediate stage, and it finally reaches an entire
analysis with the highest score. Temperley addresses
that there are two kinds of problems in implementing
the entire analysis. The first problem is how the PRS
program is to evaluate individual possible analyses. The
program analyses a piece by assigning a numerical score
to each analysis, which reflects how well it satisfies the
preference rules. The second problem is how the pro-
gram evaluates all possible well-formed analyses of a
plece according to the preference rules and then finds
the most plausible analysis, possibly with the highest
score.

Let us examine an example of handling the first
problem in meter analysis. To calculate the strength of a
unit segment, we assume each note contained in the
segment contributes a value, called effective length,
which is either the maximum of its duration and its
registral TOI (inter-onset interval to the following note
within the line of texture) or 1.0, whichever is smaller.
The total strength of a segment is calculated by the
square root of its number of notes times its average
effective length. Thus, the contribution of each note to
the total strength is predetermined and fixed.

For the next example, we handle the first problem in
melodic phrase analysis. The first step in devising the
implementation is to determine a way of evaluating
analyses by three rules: gap, phrase length, and
parallelism. Here, correct weights for the three rules
relative to one another were determined by a trial-and-
error process beforehand, and for a given phrase, the
score of each sub-phrase is further weighted by the length
of the sub-phrase.

When the program searches for a globally optimal
analysis based on the results of the local analyses, it must
consider global analyses rather than simply choosing
the best analysis for each segment in isolation.

252 Masatoshi Hamanaka et al.

Consequently, the second problem arises. Usually, even
for a monophonic short melody, the number of possible
local analyses may grow exponentially with the number
of segments, and the size of the best-so-far analysis
becomes extremely large. The Melisma system suppresses
the explosion of analyses by properly pruning less
significant analyses by dynamic programming. Temper-
ley argues that, to some extent, this searching process
reflects the human moment-to-moment cognitive process
of revision, ambiguity and expectation when listening to
music.

As described above, in PRS, the weights of rules and
parameter values are fixed during an entire analysis.
Thus, a conflict of rule applications never occurs, and
some analysis can be obtained in any event. However, the
conflict is not always resolved appropriately, and a true
analysis is not always acquired. We have an intuition that
the proper rule weights and parameter values must vary
dynamically, depending on the part of the piece being
analysed.

In our research, we do not consider the cognitive
process itself. Since the GTTM rules already represent
the cognitive process at a conceptual level, we focus on
implementing the GTTM rules.

In Melisma, a hierarchical metrical structure is
acquired as follows. First, the best location for a tactus
beat within a range of 400 to 1600 ms is identified, using
a variant of the dynamic programming technique. This
forms the preferred tactus level for the piece that emerges
from the meter analysis rules. Then, the program derives
the upper levels then the lower levels; that is, the
hierarchy is acquired in a middle-out manner. The
regularity rule i1s given priority, at the upper levels, i.e.
imposing a penalty for changes in the number of beats,
rather than at the tactus level. Note that at the top-most
level (the whole note level), to avoid the side effect of the
length rule (preferring long notes as strong beats),
Melisma just ignores the length rule as heuristics.
Temperley, however, argues that a substantial solution
to the side effect is introducing a grouping rule.

In our research, to acquire the hierarchies of the
GTTM analyses, we adopt a strategy of taking into
account global and local information at the same time, in
contrast to the middle-out approach in the meter analysis
of PRS. To eventually obtain an optimal solution that
satisfies as many preference rules as possible, we think
our strategy is advantageous.

Stammen and Pennycook (1994) implemented
only the basic rules for a grouping structure, and a
hierarchical grouping structure cannot be obtained.
Nord (1992) implemented grouping, metrical, and time-
span analyses, but the rule applications are done by
hand.

Among the previous works not directly related to
GTTM, the techniques for melody segmentation are
well developed, and there have been many attempts to

propose algorithms for melody segmentation at bound-
aries (Stammen & Pennycook, 1994; Cambouropoulos,
2001; Temperley, 2001; Ferrand et al., 2003). Conven-
tional methods focus on identification of local bound-
aries but do not pay much attention to obtaining a
hierarchical grouping structure for acquiring a time-span
tree like GTTM.

In research using a Voronoi diagram drawn on a
piano roll score (Hamanaka & Hirata, 2002), a
polyphony is analysed in a hierarchical way. However,
since the analysis lacks a musical basis, there are cases in
which no appropriate hierarchical grouping structure is
obtained. The methods based on beat tracking (Ro-
senthal, 1992; Goto, 2001) can also only acquire a
hierarchical metrical structure in one measure, since they
cannot consider such larger metrical structures as two
measures, four measures, and so on.

3. Implementing GTTM on a computer

Among music theories, GTTM is tractable for im-
plementation on a computer, but many tasks remain
toward building a working system. Toward this
end, we briefly summarize the organization of GTTM
and present the implementation problems involved.
Then, we propose strategies for resolving these
problems.

3.1 Generative theory of tonal music

GTTM is a music theory for describing the insight of an
“experienced listener””, and it consists of four sub-
theories: grouping-structure analysis, metrical-structure
analysis, time-span reduction, and prolongational
reduction.

The grouping-structure analysis hierarchically divides
a series of notes of a homophony into phrases or motives.
It seems that a singer looks for breathing points when
singing a long melody. These groups are graphically
presented as several levels of arcs below a music staff
(figure 1). The metrical-structure analysis identifies
strong and weak beats at each metrical level: quarter
note, half note, whole note, two measures, and four
measures. Essentially, it looks for timings at which a

Time-span tree

1= p o+ 2 o= 3 = 2 = 3« xa . ——Metrical structure

7 —Grouping structure

Fig. |. Grouping structure, metrical structure, and time-span
tree.

Implementing “A Generative Theory of Tonal Music”

listener beats time with his/her hands to music or a
conductor swings his/her baton. Strong beats are
illustrated by dots in multiple levels below the music
staff (figure 1). Time-span reduction distinguishes im-
portant parts of a melody from unimportant ones and
yields a binary tree, called a time-span tree, so that
each structurally important note belongs to a stem at
every level. Figure 2(a) shows a melody and its
corresponding time-span tree, where a single note,
called a head (note C4 shown in figure 2(b)), represents
the time span denoted by <---> containing the two
notes. The prolongational reduction generates a tree
structure representing subordinate relationships between
chords by explicitly indicating harmonic retention and
change.

Each sub-theory of GTTM is described by two kinds
of rules: a well-formedness rule prescribes the conditions
and constraints that must always be satisfied; a
preference rule prescribes which structure is preferable
among the structures satisfying the well-formedness
rules. Thus, depending on the situation, some preference
rules hold and others do not.

Among the four sub-theories, this paper presents the
methodology for implementing the grouping-structure
analysis, metrical-structure analysis, and time-span
reduction (Hamanaka et al., 2004, 2005a,b). Since the
prolongational reduction is still evolving and controver-
sial, we do not implement it at present.

3.2 Problems in implementing GTTM

As described above, when we make GTTM rules operate
on a computer, we have to make an ambiguous concept a
firm definition and supplement the lack of concepts.
Roughly speaking, these tasks correspond to parameter-
ization and externalization, respectively. Here, we discuss
the problems occurring in the process of parameteriza-
tion and externalization.

(b)

C4

Héad

Fig. 2. Simple example of time-span tree.

2 3 4 5 6 1 8

1
‘—fé‘c.i e o e L}

- . &
3a 6

¢. 3. Simple example of conflict between rules.

~

3a
-

6

253

3.2.1 Ambiguous rule definition

As an example, the following is Grouping Preference
Rule 4 (GPR4), regarding the extent to which GTTM
intensifies the effects of GPR2 and GPR3:

Where the effects extracted by GPR2 and GPR3 are
relatively more pronounced, a larger-level group boundary
may be placed

Here, GPR2 prescribes the relationship of onset
(attack) and offset (release) timings and a group
boundary. GPR3 prescribes the relationship of pitch
interval, dynamics, note duration, and group boundary.
That is, there are many factors influencing the determi-
nation of a group boundary. Accordingly, the meaning
of the phrase “relatively more pronounced” in GPR4 is
ambiguous, because we do not know how to normalize
the effects of the factors or how to compare the effects
with each other. Moreover, the phrase “may be placed”
implies that al one time GPR4 holds, while at another
time it does not. However, we do not know in what
particular situation GPR4 holds.

3.2.2 Conflict among preference rules

Since preference rules stipulate situations where they
preferentially hold, they may often conflict. However,
there are no rules for resolving preference rule conflicts in
GTTM.

For example, Figure 3 shows the situation of
conflicting preference rules. Here, GPR3a identifies a
leap point in the melody as a group boundary (notes
3-4, notes 7-8, and notes [1-12), while GRP6
identifies an iterating point as a group boundary (notes
4--5, notes 8—9, and notes 11-12). Thus, GPRI is as
follows:

Avoid analyses with very small groups

That is, there is a constraint to prevent a group
consisting of a single note. Therefore, GPR3a and GPR6
conflict with each other at notes 4 and 8. If both group
boundaries were adopted, we would obtain single-note
groups and GPR1 would be violated. Consequently, we
should adopt either GPR3a or GPR6 at notes 4 and §;
however, we do not know which GPR should be given a
high priority.

g 10 11
— — =

12 13 14

3aA, 6

254 Masatoshi Hamanaka et al.

3.2.3 Lack of working algorithm

Knowledge represented in the rule form is in general
considered declarative, which is advantageous in the
sense that a knowledge programmer does not need to
take into account an algorithm for reasoning. Instead, a
system is required to perform automatic reasoning on the
knowledge declaratively described. In GTTM, unfortu-
nately, there are few descriptions of the reasoning and
working algorithms needed to compute analysis results.
For example, GPR6 is as follows:

Where two or more segments of the music can be construed
as parallel, they preferably form parallel parts of groups.

GPRG6 is motivated by the fact that the beginning and the
end of a parallel segment may be heard as a group
boundary. Therefore, we should design an algorithm to
indicate the beginning and the end of every parallel
segment occurring in a piece. Furthermore, the depth of
a boundary must reflect the properties of a parallel
segment, where the properties include the length,
employing either pitch-oriented matching or timing-
oriented matching, and the weighting of either the
beginning or the end. As a result, we will possibly obtain
the bottom graph of Figure 10 in Section 4.1.4. However,
the GPR6 statement does not provide any procedural
information for generating such a function.

Procedural information for constructing hierarchical
structures for grouping-structure analysis and time-span
reduction is not sufficient in GTTM. For example, GPR4
mentions which placement of a larger-level group
boundary is preferable but does not state an algorithm
for this placement. Moreover, when constructing a
grouping structure, a working algorithm has to take into
account not only GRP2 and GPR3 but also GPRS5 and
GPR6. GRP2 and GPR3 concern local structures and
generate a grouping structure in the bottom-up manner;
in contrast, GPRS and GPR6 concern global structures
and generate a grouping structure in the top-down
manner. It would be difficult to design an effective
algorithm incorporating these GPRs consistently. As
another example, the preference rules of time-span
reduction (TSRPRs) only mention which head should
be selected, not how. To describe how to select a head, a
working algorithm has to appropriately identify the set
of head candidates from which a head is selected and
then integrate bottom-up and top-down head selections,
similarly with GPRs.

3.3 Solution: proposal of exGTTM

We present the design strategy of a machine-executable
extension of GTTM, exGTTM. As described, the
fundamental difficulties involve giving an ambiguous
concept a firm definition and supplementing the lack of

concepts. To overcome these difficulties, we employ full-
externalization and parameterization to yield precise
controllability and coverage of the human results.

We are implementing a subset of GTTM. Before
moving into details, it would be helpful to the readers to
sum up the restrictions in implementing GTTM.

e Only a monophony is handled.

Harmony (key and chord progression) is not taken
into account.

o Only ordinary heads occur in a time-span tree.

@ There are no feedbacks from the time-span reduction
to the grouping- and metrical-structure analyses.

e The prolongational reduction is not mechanized.
The input representation is a list of notes that
corresponds to a monophonic piano roll.

e We divide the entire problem into identifying the
domain of all possible answers and searching for
the most preferred one; here, we only deal with the
former sub-problem.

e We focus on implementing GTTM, but it does not
consider the human’s process of perceiving and
recognizing music.

Paradoxically speaking, what we have not implemented
enables us to implement GTTM.

3.3.1 Full externalization and parameterization

We appropriately supply lacking parameters and make
implicit parameters explicit'. The parameters introduced
by exGTTM are categorized into three categories:
identified, implied, and unaware.

For the first category, a parameter is identified in
GTTM but is not assigned concrete values. Hence, we
valuate such a parameter. For example, since the
resulting value of the GPR2a application, Dgpraa, 1S
binary, if it holds, Dgpr2a makes 1, otherwise 0. On the
other hand, since GPR6 is held indefinitely, the resulting
value of GPR6, Dgprs, also varies continuously between
0 and 1.

For the second category, a parameter is implied in
GTTM. Hence, we make it explicit. For example, to
resolve the preference rule conflict, we introduce para-
meters to express the priority for each preference rule
(SCPR2 in Table 1, SMPR#z in Table 2, and STSRPRz
in Table 3). Since each preference rule has its own
priority, all of the priority patterns are realized. This is
an example of full-parameterization.

For the third category, we need to complement
parameters that are not recognized in the original theory,

'In the paper, the word “parameter” is used not only for
parameters used in controlling a system externally but also for
internal variables (intermediated variables) connecting submo-
dules.

Implementing A Generative Theory of Tonal Music” 255

Table |. Fifteen adjustable parameters for grouping-structure analyser.

Parameters Description

Scrr, (0 < Sger, < 1) Strength of each rule. The larger the value is, the stronger the rule acts in (19) and (23). R € {2a, 2b,

3a, 3b, 3c, 3d, 4, 5, and 6}.

Standard deviation of a Gaussian distribution, the average of which is the boundary by GPRS. The
larger the value is, the wider its skirt becomes in (14).

Balance between temporal similarity of attack points and that of pitch difference in GPR6. The
larger the value is, the more the system estimates the pitch difference in (15).

Weight for the length of parallel phrases. The larger the value is, the more the length of parallel
phrases is prioritized in GPR6 in (15).

Balance determining whether the note i becomes the ending note of a group or the beginning note of
the following group in GPR6. The larger the value is, the more the note tends to be the ending note
in (16).

Threshold at which the effects of GPR2,3 are considered to be salient in GPR4. The smaller the value
is, the more probably GPR4 is applied in (13).

Threshold in the lower-level boundary. The smaller the value is, the more salient the boundary
becomes.

F(0<6<0.1)
Wi (0< W, <)
W, (0< W< 1)

W, (0< W,<1)

Torra 0 < Tgpra < 1)

740\\/ (0 S Tlow S 1)

Table 2. Eighteen adjustable parameters for metrical-structure analyser.

Parameters Description

SMPR, Strength of each rule. The larger the value is, the stronger the rule acts in (34), (35) and (38). R € {1, 2, 3, 4, 5a,
5b, 5¢, 5d, Se, and 10}

Balance between temporal similarity of attack points and that of pitch difference in MPR1. The larger the
value is, the more the system estimates the pitch difference.

Weight for the length of parallel phrases. The larger the value is, the more the length of paraliel phrases is
prioritized in MPR1.

Balance determining whether the note i becomes the ending note of a group or the beginning note of the
following group in MPR1. The larger the value is, the more the note tends to be the ending note.

Tmpr, Value of the threshold that decides whether each rule is applicable in (25), (28), (29), (30), (31). R € {1, 4, 5a,

5b, and 5c}

Wy (0 < W, < 1)
W, (0< W, < 1)

W, (0< W, < 1)

Table 3. Ten adjustable parameters for time-span tree analyser.

Parameters Description

Strength of each rule. The larger the value 1s, the stronger the rule acts in (46) and (47). R € {1, 2, 3, 4, 5a, 5b,
Sc, 5d, Se, and 10}

The balance between the temporal similarity of attack points and that of the pitch difference in TSRPR4. The
larger the value is, the more the system estimates the pitch difference.

The weight for the length of parallel phrases. The larger the value is, the more the length of parallel phrases is
estimated in TSRPR4.

The balance determines whether the note i becomes the ending note of a group or the beginning note of the
following group in TSRPR4. The larger the value is, the more the note tends to be the ending note.

STSRPR
W (0< Wy < 1)
W (0< W< 1)

W, (0< W, < 1)

since some of them may nearly lack any musicological
meanings. For example, GPR6 in exGTTM needs to add
parameters for controlling the properties of paraliel
segments, including the weights for pitch-oriented
matching or timing-oriented matching.

We add a comment to the domain of intermediate
variables, denoted as D and B. The domain of all the

intermediate variables is constrained within the range of
0 to |, and for this purpose, those variables are
normalized at every computing stage. Thanks to this
property, exGTTM can flexibly combine any intermedi-
ate variables (and possibly parameters) and cascade as
many weighted-mean calculations as needed. Accord-
ingly, this facilitates precise controllability.

256 Masatoshi Hamanaka et al.

3.3.2 Algorithm for acquiring hierarchy

Among issues that require working algorithms, the
problems for acquiring hierarchical structures in the
grouping- and metrical-structure analyses and the time-
span tree reduction can be all regarded as a constraint-
satisfaction problem (CSP). This is because only the
properties to be satisfied for the hierarchical structures
are represented in the form of a rule, that is, no
constraint nor order of generating hierarchical structures
is determined in advance.

The constraints stipulated by the GTTM rules are
divided into two categories: local and global. The former
include GPR2 (proximity) and TSRPRI (strong metrical
position), and the latter GPR5 (symmetry) and MPRI
(parallelism). We need to handle global constraints
carefully when generating hierarchical structures. For
the example of GPRS in Figure 4, given a group at Layer
I, an inner boundary likely occurs around the centre of
the group, that is, either between Notes 1 and 2 or Notes
2 and 3. Here, we can consider two cases as follows. In
Case 1, the boundary between Notes 1 and 2 is selected,
taking into account the effects of some other rules. Then
in each subgroup in Layer 2, the inner boundary of the
subgroup may occur in the left-hand side of a centre
note. On the other hand, in Case 2, the boundary
between Notes 2 and 3 is selected. Therefore, the inner
boundary may occur in the right-hand side of a centre
note. Consequently, in computing GPRS, the boundary
position determined influences the identifications of
remote boundaries in lower layers, and we have to take
into account up-to-date global information every time.
That is, a global constraint is inevitably dynamic.

Based on the above consideration, we are developing
algorithms for generating hierarchical structures for
exGTTM so that nodes are generated either from the
bottom-most nodes or the top-most node incrementally
and that every time the nodes at a layer are calculated,

Note 1

TN

Group

-

Layer 1 I<
Boundary around the center
Case 1: Boundary between Notes 1 & 2 selected
2
T |

-

Subgroup P

Layer 2 == ’&“

Case 2: Boundary between Notes 2 & 3 selected

PRAd D
T

*

Subgroup P

Layer 2 |< ‘ﬁ“

v

Fig. 4. Global constraints by GPRS5.

global information is re-calculated before moving onto
an adjacent layer. We will describe these algorithms in
more detail later (Sections 4.2, 5.2 and 6.2).

4. Grouping analysis

The algorithm of grouping analysis consists of the
following steps.

(1) Regard the whole piece as a group.

(2) Apply those rules that are applicable to local
structures.

(3) Calculate local strength as boundaries.

(4) Apply phrasal rules.

(5) Calculate phrasal boundaries.

(6) Divide the entire piece into two.

(7) Repeat steps 4 to 6 as long as there is a local
boundary.

Using this procedure, we can regulate the order of rule
application and combine phrasal and local structuring.

We show the procedure in Figure 5. We adopt
MusicXML (Recordare, 2007a) for the input format
since it 1s now prevalent for composition, analysis, and
search; moreover, it can be easily converted to other
formats. However, exGTTM does not use the informa-
tion of key and meter provided by MusicXML. In
addition, we have designed GroupingXML as an output
format of the grouping structure.

In this procedure, we restrict the target of analysis to
monophonic music.?

4.1 Application of grouping preference rules

In this section, we explain ten grouping preference rules
(GPRs), i.e. GPRy (R € {l, 2a, 2b, 3a, 3b, 3¢, 3d, 4, 5,
and 6}). The possibility that the ith transition becomes a
boundary by the Rth rule is denoted by Dgpgr,(i)(0 <
Dgpr, (i) < 1,R € {1, 2a, 2b, 3a,3b,3c,3d, 4, 5, and 6}).
In this study, we introduce the 15 adjustable parameters
shown in Table 1. Figure 6 shows the relation between
the grouping preference rules and the parameters.
Besides the above ten rules, GTTM includes GPR7
(time-span and prolongational stability), which prefers
those structures by which the time-span reduction or the
prolongational reduction become more stable. However,
this rule requires the information of later processes, such
as time-span/prolongational reductions, to be sent back
to the earlier processes, and its details are not given in
GTTM (Lerdahl & Jackendofl, 1983). Consequently, we
have not included GPR7 in this study.

Monophonic music consists only of a melody line that is not
accompanied by chords.

o Yes
GroupingXML |—
Fig. 5. Processing flow of grouping structure analyser.
Basic parameters
Dprap(i)
gcpma%; T
_ ~GPR3bV —r—
0. l¢ T T Sarr) Tk
lw,, w, w| |Porrse wlbas, o)
l.,» U e .Fg-r D. (l) 3¢,3d, 6}
n v=—~1— - GPR3d l Biow(i)b=[D o (22) en
i (15)~(17) i (18 GPR1 | Nhiahr -)
o L G0
P () GPr6 V2| |
© Peal 1m
Bir— ﬁ‘ 8 i Depra(D) [@3 Bhigh() (n formula
l %
Pn(i) LZJ (= variable
Pa(l)f ol R € 1{2a,2b,3a,3b, R
o [p—) 3c,3d,4,5,6} 1 parameter
Ppl) 1(14 Dprs(7) | | e

Implementing “'A Generative Theory of Tonal Music”

/]
MUSiCXML J_£}¥ EEanETE = T e

A

mrem g LT B

Grouping-Structure I
Analyzer

Detection of
low-level boundary

BJ o w(i)

boundary
strength)

Applying GPR1, 2,3, 6

Low-Level boundary

» [time]

Detection of
high-level boundary

Divide by top down

| - .

—

Applying GPR1, 2, 3,4, 5, 6
i

- L_ON(ains more than one boundaly ———

Fig. 6. Relationship between parameters and GPRs.

4.1.1 Calculation of basic parameters

We first calculate six basic parameters from MusicXML,

that 1s,

p, the offset-to-onset interval (OOT)

i; the inter-onset interval (IOT)

n; the register (pitch difference)

d; the dynamics difference

o; the difference in the ratio between the formal length

Bi

of the note on the score and its real duration in
performance
the difference in duration

257

In Figure 7, t, is the formal length of the ith note on
the score, ¢; is the formal offset time, &; is the real offset
time, f; is the pitch, and v, is the dynamic. The time unit is
that of a quarter note, and the pitch is measured by a
semitone (MIDI note number). We formally represent

these basic parameters mathematically.

p, = 4 T & if1 —&2>0,
! 0 otherwise,
b = Tigl — Ty

(D

)

258 Masatoshi Hamanaka et al.

[Pitch] ‘é ¢ J :} Y O

Fig. 7. Calculation of basic parameters.

’71' :ﬁ+l _ﬁ> (3)
0i = |vipr — il (4)
o Bitl —Tiyl & T (5)

Bl —Tigl & — T
Bi = |tiv1 — til- (6)

4.1.2 Application of GPR2, 3, and 4

GPR2, 3, and 4 are applied to the four consecutive notes
n Cny,CnyCny. The ith transition, that is, the interval
between the ith note and the 4+ Ith, can be either a
boundary (Dgpr, (f) = 1) or not (Dgpr, (i) = 0).

GPR2a (slur/rest) recognizes a boundary if the offset-
to-onset interval {OOI) of n, and ns is longer than that of
n and n; and that of n3 and ns. Thus, GPR2a is
formalized as follows.

. 1 ifp_; <p;and p; > p,
D — { -1) i i i+ 7
GpRaa (1) 0 otherwise. @

GPR2b (attack point) recognizes a boundary if the
inter-onset interval (IOI) of n, and ns is longer than that
of n, and n, and that of ny and n4. Thus, GPR2b is
formalized as follows.

N 1 if ti—1 < tpand ¢ > Litl,
Daprao(i) = {0 otherwise. (8)

GPR3a (register) recognizes a boundary if the pitch
difference between n, and nj is larger that of n, and n,
and that of n; and ny. GPR3a is formalized as follows.

)

Depraa(i) = { 1 if |n_y] <yl and |n;] > |"71+|
0 otherwise.

GPR3b (dynamics) recognizes a boundary if there is a
change in dynamics between n, and ns, but no changes
between n; and n, nor between n; and ny.

N | if 5,‘_] = 0,(3,‘ # 0, and 5i+| = 0,
Daprsn (i) = {0 otherwise.

(10)

GPR3c (articulation) recognizes a boundary if there is
a change in articulation between n, and n3, but no
changes between n; and n, nor between n; and ns.
Because we could not find a definition of articulation in
GTTM (Lerdahl & Jackendoff, 1983), we substitute it
with the ratio between the formal length on the score and
the real duration in performance. Thus, the definition
becomes as follows,

N _ 1 ifa_1=0,0#0, and ;4 =0,
Daprseli) = {0 otherwise.
(11)

GPR3d (length) recognizes a boundary if the duration
of n, and ny are the same while that of n; and n, and that
of my and n4 are different. GPR3d is formalized as
follows.

N 1 lf ﬁ,‘_] = 0,ﬂ[% 01 and ﬂi+l == O’
Dapraa(i) = { 0 otherwise.
(12)

GPR4 (intensification) recognizes a boundary if the
results by GPR2 and 3 are salient. To formalize GPR4,
we consider whether P,(i), P,(i), P,(i), Ps(i), Py(i), Pp(i)
have larger values, that is, the results of GPR2a, 2b, 3a,
3b, 3c, 3d are salient. TGPR4 (0 <Tgpra < l) is the
threshold for judging whether GPR4 is applicable, i.e.

Implementing “'A Generative Theory of Tonal Music” 259

whether the effects of GPR2a, 2b, 3a, 3b, 3c, 3d
are salient.

Dgpra(i)

I if max (P,(i), P.(i), P W (0), Ps(i), Poli),
= Pp(i)) > Tpra

0 otherwise,

(13)

where
:{P,/ Pict T Pi+pi) i piy+pi+pi >0,
0 otherwise,
= i/ (tic1 + b + tip1)s
il /ia L+ (gl + T 1) 2F Py | + Il
il >0,
0 otherwise,
0if(0iy +0;+0:p1) if 8 + 6+ iy >0,
{0 otherwise,

Pali) = {%‘/(ai—l + o+ otigy)
¢ 0 otherwise,
{5/(&'-1 +Bi+Biv) 0By + B+ Biyy > 0.

otherwise.

ey + oy + o >0,

Py(i) =

4.1.3 Application of GPRS (symmetry)

GPRS5 prefers that a group be divided into two sub-
groups of the same length. Otherwise, the more similar
the lengths of the two subgroups, the more preferable. In
this study, we consider a function that gives priority to
the symmetry of the two consecutive subgroups. As a
representative of such functions, we employ a Gaussian
distribution Dgprs(i) with the standard deviation o, the
unit of which is a quarter note.

Figure 8(a) shows the distribution Dgprs(i) of the
probability of symmetry. After all of the GPRs are
applied, the distribution in the lower grouping level
becomes that in Figure 8(b). The nearer the standard
deviation ¢ comes to 0, the narrower the skirt becomes,
and the larger the value of Dgprs(i) becomes. Thus, the
mid-point of the upper group tends to be a boundary of
subgroups. Conversely, when ¢ is large, the boundaries
of lower groups may deviate from the center of their
higher group.

.] —(Ti — Tmi 2
Dgprs(i) = mexp {g}, (14)

202

where

Eend — Tstart

2 ’

Tmid =

r’r’ﬁ-.’;..'i; frerip e ie=s LD —
D5 (D
(a) _‘
0 >
Grouping level a
start end, start
L?ii'l!‘t{.)
i
. - —
Grouping level b
start end,_start end, start

Fig. 8. Degree of symmetry Dgprs(i).

and “start” is the first note of a group at the current
grouping level and “‘end” is the ending note. “‘start” and
“end” are renewed and new Dgprs(i) is calculated when
the upper group is divided and its lower groups are
generated.

The actual adjustable parameter of the system is not o
but ¢ X (eend — Tsirt) = 0 thus, the skirt of the Gaussian
distribution becomes narrower in the lower grouping
levels.

4.1.4 Application of GPRG (parallelism)

GPR6 concerns parallelism, that is, the melodic identity or
similarity. Namely, if multiple parts in a musical piece
include similar melodies, then the grouping structure should
also reflect the same parallelism. Thus, when similar parts
are found, both ends of the melody are highly probable to
be boundaries. In this section, we discuss the parameter
Dgpre(i) (0 < Dgpre(i) < 1), that is, the probability for the
note i to be the beginning or the ending note of a parallel
phrase. As a result, we expect that the highly probable
positions of boundaries are clarified as in Figure 9.

Dgpre(i) is calculated as follows. First, we calculate
the similarity between the interval from note i with length
r and the one from j with the same length, Next, for such
i, we calculate the similarity for all /s with the same
length r. Because there is no description of the similarity
of melodies in GTTM (Lerdahl & Jackendofl, 1983), we
define our own similarity. Our ag;usiable parameters for
this similarity include:

W,, (0< W, <1) For each note, give a preference of
the similarity of onset time to that of
pitch.

Give a preference of the longer
interval to the shorter one when

W, (0<W,<1)

260 Masatoshi Hamanaka et al.

(a) Degree of the same rhythm :—673—-
(b) Degree of the same register = %

Fig. 9. Similarity of parallel phrases.

parallel intervals
other.
For each note, give a preference of
being the beginning note of a group
to being the ending note.

overlap each

W, 0<W,<1)

The similarity in this definition does not affect other
parts of the system. Thus, we can substitute other
methods (e.g. Hewlett, 1998) for our definition.

Let us first consider the example in Figure 9. In the
figure, three notes out of four coincide with regard to
onset time. Two notes out of the three also coincide with
regard to pitch. In our implementation, we regard a
greater number of notes having the same onset time as
indicating greater similarity of melodies. Furthermore,
the more the number of notes of the same onset time
have the same pitch, the more similar the melodies are.

We formalize the above discussion as follows. We
assume that the beginning and the ending notes of a
group possess beats and that the length of an interval r is
a multiple of a beat. Also, we assume that parallelism
cannot occur at such adjacent positions, say, as the
distance of less than a quarter of a beat. Given a beat
number m (>1), we write the interval of r beats from m as
[, m+r), which does not include the (m -+ r)th. We
define the basic parameters as follows.

N(m, r) the number of notes in [m, m+ r).

O@m, n, r) the number of notes of the same onset time
in (m, m+r) and (n, n+r).

P(m, n, r) the number of notes of the same pitch, as
well as of the same onset time.

We define the similarity between the interval (m, m+r)
and (n, n+r) with these parameters:

_ O(m7n7 r)
Gt) ~{ i a0)
P(m,n,r) W (1)
70(m,n,r) X Wm} X prr

where given the whole number of beats L, 1<m,
n<L—r+1 and 1<r<L. Beyond this domain, we
regard G(m, n, r)=0.

Note that #*" becomes 1 when W,=0, and as r
increases, " also increases as far as W, > 0. Thus, as W,
comes close to 1, the similarity of longer intervals
becomes significant.

However, there are also meaningless intervals for
calculating the similarity. We have assumed that the
beginning and the ending notes of an interval must be
on certain beats, and thus, those intervals that do not
satisfy this condition should be excluded. We introduce
a predicate to determine whether the ith note possesses
a beat.

b(i) ith note is the beginning one of an interval.

e(i) ith note is the ending one of an interval.

(i) ith note is either the beginning or ending one of an
interval.

We employ the following definitions.

head(m) returns the first note i in [m, m+7r).

tail(m) returns the last note i in [m, m+1).
beat(i) returns m if i is in [m, m+1).
Then,

b(i) is true if i = head(beat(i)) and i # tail(beat(i)).
e(i) is true if i # head(beat(i)) and i = tail(beat(i)).
1(i) is true if i= head(beat(i)) and i = tail(beat(i)).

Next, we calculate the similarity of intervals beginning
from the ith note.

G(beat(i),n, r) x (1 — W)
if (i) holds and N(n,1) > I,
G(beat(i) — r,n—r,r) x Wi
N if e(i) holds and N(n,1) > 1,
Al) = ZZ Glbear(i), n,r) x (1 — W)
+G(beat(i) — ron —r,r) x W
il #(i) holds and N(m, 1) > 1,
0 otherwise.

(16)

Because parallel intervals do not overlap each other,
the length of an interval must be shorter than half of the
whole number of beats L. As the final step, we normal-
ize A(i). Let A be the maximum value among the
notes included in the piece, that is, 4., =max (4(1),
A(2),...,A(NQ,L)). Then,

Dgpre(i) = A()/ Amax - (17

Note that the value of Dgpre(i) is indifferent to the
length of the entire piece. The greater the number of

Implementing “'A Generative Theory of Tonal Music” 261

parallel sequences beginning, or ending, with i, the larger
the value of Dgprsli) is.

In Figure 10, the uppermost graph denotes the
possibility that each note can be the beginning of a
parallel interval. Similarly, the middle graph shows the
possibility of the ending. The bottom graph is the result
of combining the above two, together with the normal-
1zation.

4.1.5 Application of GPRI (alternative form)

GPR1 prohibits one note from forming a group. GPRI
gives a criterion whether the ith transition can be a
boundary (Dgpri(i)=1) or not (Dgpri()=0). In
Figure 11, B'¥(J) represents the local strength by a real
number between 0 and 1; the larger the value is, the more
likely the boundary is. Dgpr (i) is calculated in the
following way.

I iF B — 1) < BOV()),
. Blow(l-) > BIOW(i+])
- 2) 18
DGPRI(Z) and D(]pm(i - 1) = 0, ()
0 otherwise,
where
BlOW(l-) — ZR DGPRR(I) X SGPRR (19)

max (3 & Dopre(i') X Scpry)

and R € {2a, 2b, 3a, 3b, 3c, 3d, and 6}.

4.2 Acquisition of hierarchical grouping structure

Local boundaries are detected by Dgpri(9), Doprzali),

Deprav(d), Dapria(d), Daprav(d), Daprac(i)s Dopradli),
and Dgpre(i). T°% is the threshold for determining

ey
I s e o e e e
ﬁ‘"\%'w,l:: ¥ :'."“!':-‘.':'.-'-!=——-—-:'

| S i J (! A A
PP S Sm— — | E—

S 3 G(beat(i),n,r)

nixli I

i."-

L
3 3 Gbeat(i) -r,n—r,r)

“H\ L1 lg_L_L_gﬁi

D, ()

GPRA

0 i

Fig. 10. Degree of parallelism Dgprs(i).

whether the ith transition becomes a boundary (D'°¥
(i)=1) or not (D' (i)=0). B'¥()) is defined in (19).

1 if BoY()) > Tlov,
and Dgpr (i) = 1, (20)
0 otherwise.

Dlo“’(l-) —

The hierarchical grouping structure is formed [rom
the local boundaries D'°*(i) in the bottom-up way and
also from Dgpri(i), Dgpr2a(9), Dcprav(i): Dopria(d),
Dagpriv(8), Daprac(d), Daprad(d), DGPR4(0 Dgprs(i), and
Deprg(i) in the top-down way. B™8"(j) represents the
strength of a boundary in a higher hierarchy by a real
number from 0 to 1. B"&"(j) is different from B'°“(i) in
that the former reflects the result of those rules that
concern phrasal structure, that is, Dgpra4(f) and
Dgprs(i). When a group includes a local boundary in
it, the boundaries of one upper level 7 is recursively
detected by the following procedure (Figure 12), where
B"Me"(j) is renewed at each level, since the value of
Dgprs(f) will change at every grouping level. Then we
have a boundary

i= argmax DME (i), (21)

where

D" (i) = D'V(i) x B (i), (22)
2 & Dapre (i) X 5GPR,

max (ZR Dgpr, (i (") X SGPRR)

Bhlgh()

for R € {2a, 2b, 3a, 3b, 3¢, 3d, 4, 5, and 6} and for all the
I’'s included in the group.

(?1 .'l:,'_,.j"_:;: E;;é.__- '-_p ‘”‘"!‘:’=.'_5' E

Blow : \l .

OL ol ol a0 o 4}
0
/-

GPRZa(l)T : : 5
> Dol)T >
R ,

D) | | | :
Dipra®) .

Diprsdd)

L !
DL L1 I
|

Y

Y

G

@GPRGU)] -

v

SGPRR |

Fig. 11. Low-level strength of boundary B,

262 Masatoshi Hamanaka et al.

§ e} = T L LY .
A G¥ | ,'.:‘.I: § ;‘l.l!.r’. Y H
/Dhigh[ﬂ1
0 !
M
\ AN A A J
£ f
Irj{)hig]l(‘;)] U
¢ 1 || i
o AL J
i
/Dhighu) L]
| l I | .
0 i
\ J
\ J

Calculate inthis way the degree of
high-level boundary iteratively

Fig. 12. Construction of hierarchical grouping structure.

See Figure 7 for the full procedure of parameter
calculation.

S. Metrical analysis

The algorithm of metrical analysis consists of the
following steps.

(1) Regard all of the beats in the entire piece as a
lowest-level (global) metrical structure.

(2) Apply those rules that are applicable to local
metrical structures.

(3) Calculate local-level metrical strength.

(4) Select the strongest metrical structure from the
possible structures.

(5) Repeat steps 2 to 4 as long as the current structure
contains more than one beat.

According to this procedure, we can construct a
hierarchical metrical structure.

Figure 13 shows the processing flow of the metrical
analysis. As the primary input formats, we adopt
MusicXML (Recordare, 2007a) and GroupingXML
(Hamanaka et al, 2004). A hierarchical metrical
structure is constructed in a top-down way, while the
lower-level beat strength is detected in a bottom-up way.
We then design MetricalXML as the export format for
our system.

5.1 Application of MPRs

Here, we discuss the applications of MPR1, 2, 3, 4, 5, and
10. We do not include MPRY because this rule requires
sending the information to the later process of time-span

GroupingXML MusicXML

/] A R .
[i=F5a =Rt L e |

Metrical Structure] 1

Analyzer Current
structure

Calculation of low- matieal

level beat strength D (i

Choice of
next level
structures

Choosing next
level structure

Fig. 13. Processing flow of metrical-structure analyser.

reduction and back to the earlier process of metrical
analysis. Furthermore, we do not deal with MPRG,
MPR7, or MPR8 because we restrict our target music to
monophony. The strength of the beat dependent on each
rule can be expressed by Duvpr, (i) (R € {1, 2, 3, 4, 5a, 5b,
5¢, 5d, and 5e}), where 0 < Dypr, (i) < 1. As there is no
strict order in applying MPR rules, ambiguities may
result from the analysis. To solve this problem, we use
adjustable parameters Smpr, (i) (R € {1, 2, 3, 4, 5a, Sb,
5c, 5d, Se, and 10}), which enable us to control the
strength of each rule. Figure 14 shows the relationship
between the parameters and MPRs. Our metrical-
structure analyser has 18 adjustable parameters, which
include Smpry, Wm» Wr, Wi, and Typr, (Table 2).

5.1.1 Calculation of basic parameters

From the input MusicXML, the following five basic
parameters of the ith beat in the current hierarchy of
beats are calculated. When there is no note in the
position of the ith beat, each basic parameter makes zero.

y, dynamic

A; length of note

{, duration of dynamic
k; length of slur

v, pitch

Since GTTM (Lerdahl & Jackendoff, 1983) does not
include the notion of ‘duration of dynamic,” we define it
as the length from one beat to the next beat or rest. The
averages of the above basic parameters are denoted as
9,4,(, %, and v, respectively. From the result of Group-
ingXML, the two basic parameters i, and i, are the
beginning and the ending, respectively, of the smallest
group containing { and more than one beat in the current
structure.

Implementing A Generative Theory of Tonal Music” 263

GroupingXML 54,

w,, . w,| | Tuer

\position(i) Nt

I _,L (26)

;A |(25) .
Group (i) A(;z/) i Dh4PRl(l-k)
size(i) R

RE {2,3,4,5a 5b,5¢,5d,5¢}

‘SMPJ{ R

I>

. (35) ical
je DMPRZ(Z) Bmelnca (l)
MusicXML 27 - Ship | Snipr
y] @ | Dyprs(d PR1 —MPRI10
(28) ~(31) .
==t Dipra(i)
Y i Th'”‘RH DN[PRS&(I)
A; |re 505050 DMPRsb({) (n): formula
éi Dypprse(9)
v, (32) - variable
K, Dyyprsa(i)
(33) . | satamctar |
DMPRSC(Z) . parameter

Fig. 14. Parameters in MPRs.

5.1.2 Application of MPRI (parallelism)

MPRI concerns the parallelism in metrical structures
and prefers that a pair of paralle] groups have similar
metric structures. The similarity is evaluated basically in
the same way as done in GPR6 (15), but the intervals to
be estimated are different. In the case of GPR6, we have
targeted all of the intervals with length r, while in MPR1
we apply the method only to the resultant groups of the
grouping analysis. Then, the degree of parallelism A(i, j)
between the ith beat in the interval (m, m -+ r) and the jth
beat in (m, m+5) becomes

A(i,j) = G(groups(i), groups(j), size()), (24)

where group,(i) 1s the first beat of the group including /,
and size(i) is the number of beats of the group. When the
value of A(Z, j) goes beyond the threshold TMPRL after
normalization, we judge that the ith beat and jth beat are
parallel.

I AG)) Apax > TMPRY,
Dwpri (6,)) = and position(i) = position{j), (25)
0 otherwise,

given

Amax = max (4(i, 1), 4(i,2),..., A, L)),

where position(i) is the temporal duration from the begin-
ning of the group including the i-beat to the ith beat itself.

5.1.3 Application of MPR2 and 3

MPR2 (strong beat early) has a weak preference for a
metrical structure in which the strongest beat in a group
appears relatively early in the group. We formalized

Dipro(i) so that the closer the strongest beat appears to
the beginning of the group, the higher the value is

Dmpra(i) = (i — i)/ (i — is). (26)

MPR3 (event) prefers a metrical structure in which the
inceptions of pitch-events are on strong beats (Figure 15).
Thus, Dypr3(d) returns 1 1f / has a beat, and 0 otherwise.

1 v >0,

Dypr3 (i) = {0 7= 0. (27)

5.1.4 Application of MPR4, 5a, 5b, and 5c

We introduced the adjustable parameters (Twmpr,
(R € {4,5a,5b,and 5c}) (0 < Twmpr, < 1) to control the
threshold that determines whether each rule is applicable,
i.e. (Dvpr,(£) = 1) or not (Dupr,(?) = 0) (Figure 16).

MPR4 (stress) prefers a metrical structure in which a
relatively strong beat occurs at the inception of a stressed
note. Dypra(i) returns 1 if a stressed note has a strong
beat, and 0 otherwise.

- 1 9, >2x75 X Twmpra,
D :{ P> 2 28
meRa(7) 0 otherwise. (28)

MPRSa (long pitch-event) prefers a metrical structure
in which a relatively strong beat occurs at the inception
of a long note. Dyprsa(d) returns 1 if a relatively longer
note possesses a strong beat, and 0 otherwise.

, 1 4 >2xAxT
D — i MPRS5a 29
Mewsa (1) { 0 otherwise. (29)

MPRS5b (long duration of a dynamic) prefers a metrical
structure in which a relatively strong beat occurs at the

264

Masatoshi Hamanaka et al.

“—4 — Grouping structure

D MPR2 {-I

0|I|.. L 11

— Metrical structure
(Current structure)

— 2]

Dyypa)

Ll

Fig. 15. Application of MPR2 and 3.

—_—— >

éb‘n.?i, % et - p

2000000000000 000 0O
M Iy A

Fig. 16. Application of MPR4, 5a, 5b and 5c.

inception of a long duration of a dynamic. Dyprsu(f)
returns 1 if a dynamically large note possesses a strong
beat, and 0 otherwise.
Dyprsp (i) = { I 6> 2 X0 Tuerso, (30)
0 otherwise.

MPRSc (long slur) prefers a metrical structure in
which a relatively strong beat occurs at the inception of a
long slur. Dyprse(d) returns 1 if a relatively long slur
possesses a strong beat, and 0 otherwise.

] K; > 2 X K X TMmpRsc,
0 otherwise.

Dprsc(7) = { (30

5.1.5 Application of MPRS5d and Se

MPRSd (long pattern of articulation) prefers that the
relatively long repetition of the same articulation have a
strong beat. Because we could not find a definition for

this repetition, we regard it as the repetitive application of
MPR5a according to the examples in GTTM (Lerdahl &
JackendofY, 1983). Dmprsq(f) returns 1 if MPRS5a is
consecutively applied, and 0 otherwise.

Dyprsa (i) = 1 Dyprsa(i) = 1 and Dyprsa(i+ 1) = 1,
0 otherwise.
(32)

MPRS5e (long duration of a pitch) is the rule for pitch-
repetition. Dyprse(f) returns 1 if the same pitch persists,
and 0 otherwise.

. 1 vi=vy
D i :{ i I+.l) 33
merse(1) 0 otherwise. (33)
5.2 Acquisition of hierarchical metrical structure
Low-level beat strength D™} is calculated
by Dwmpri(i, J), Dwmpra(d), Dwmpri(d), Dwmprali),

Implementing "4 Generative Theory of Tonal Music” 265

Dyiprsa(i), Dmprsb(]), Dwmprse(d), Dwmprsa(i), and

DMPRSe(i)-

Dmetrical(l-) — Bme[rical(l-) + Z(Bmetrical(]-)
J (34)
X Smer1 if Dupri(i,)) = 1),

where

Bmctrical(l') _ Z Dupr, (9) X Smpr, (35)
R

and R € {2, 3, 4, 5a, 5b, 5c, and 5d}. B™"?\(}) represents
the weighted summation of Smpr, and Dupr, (i), (R € 2,
3,4, Sa, Sb, Sc, 5d, and Se), and D™}y represents the
sum of B™2(}) and summation of B™!(}), where
the ith beat and jth beat are parallel and consequently
Dypri(6,)= 1.

A hierarchical metrical structure is constructed by
iterating the calculation of the low-level strength of the
beat D™ °4(}) for the current structure and choosing the
next-level structure. When the current structure contains
more than one beat, the next-level structure is chosen as
follows. First, we assume that the piece is in simple duple
time; then we compare among

Z Dmctrical(l-), Z Dmelrical (l) (36)

{ili=2k—1} {ili=2k)

(k=1,2,3,...), and choose the larger one, i.e. either the
odd i’s or the even i’s would organize the upper structure.
In a similar way, when we assume that the piece is in
simple triple time, /’s are collected in the three different

é"b-‘b 4 '-T: :: . e
g c

=
o a®s —

ways: {ili=3k — 2}, {ili=3k — 1}, or {ili=3k} (k=1,2
3, ...), and we choose the set by which

Z Drnelrical(i) X SMPRI0 (37)

i

H

becomes largest. Note that MPRI10 prefers metrical
structures in which every other beat is strong so that the
simple triple time is deterred by Syerio.

In Figure 17, i shows the choice of

i i={1,3,5..}
2 iff i={2,4,6,..}
n=1<3 if i={1,47,..} (38)
4 iff i=1{2,58,..]}
5 if i={3,6,9,..)

including both of simple duple and simple triple time.
As a result, each note or rest of a music piece is marked
by a dot if it possesses a strong beat at the certain level of
the hierarchy. According to the difference in levels and the
strength of a beat, each note has a different number of dots.

6. Generation of time-span tree

The time-span tree is constructed in the following way.

(1) Consider all of the notes as a head.

(2) Apply those rules that are applicable to local-level
heads.

(3) Calculate the head strength at a local-level.

(4) Select the next-level head from each time-span.

(5) Tterate steps 2 and 4 as long as the time-span
contains more than one head.

., ° e e a5 5
. &

—_—

Current structure *ee¢866000000000000000000000000000080000

Dmetrical(l-) .
I T |

|
it !
1} i
e o 8

——

Choice of next-level structure

® & & & & @ & 0 & & & & 0 O 0 0" O & 0
4
it
|
o

m=1 L | 1

L 4

l B! = [i]

® ® 8 ® & 2 @ ©® % O 0 o @ O @ o & &

m=2

® [] [] L
m=3

']

m=4

n’:s L] L] L]

!

P
SEIiEE
g

Fig. 17. Selecting the next-level structure.

266 Masatoshi Ham

Here, we employ the adjustable parameters Stsrpr, (R €
{1, 3a, 3b, 4, 8, and 9}), each of which is the strength of a
time-span tree preference rule. Figure 18 shows the
processing flow of the time-span reduction. As the input
formats, we adopt MusicXML (Recordare, 2007a),
GroupingXML (Hamanaka et al.,, 2004) and Metri-
cal XML (Hamanaka et al., 2005a). We then design
Time-spanXML as the export format for our system.

6.1 Application of time-span reduction preference rules

In this section, we explain our application methods of
TSRPRz (R € {1, 3, 4, 8, and 9}). In this study, we
restrict our target music to monophonic music, so we

anaka et al.

do not deal with TSRPR2 and TSRPR7. Furthermore,
we do not implement TSRPRS and TSRPR6 because
they suggest a reverse flow of processing, i.e. they
select a time-span tree that makes metric structures or
prolongational reductions stable. Drsppr,(i) (R €
{1, 3a, 3b, 4, 8, and 9}) indicates whether TSRPRy
holds. Since the priority among these TSRPRs was
not shown in GTTM (Lerdahl & Jackendoff, 1983) as
were GPRs and MPRs, we introduce adjustable para-
meters Stsppr, (R € {1, 3a, 3b, 4, 8, and 9}). Figure 19
shows the dependency between the application of
TSRPRs. Our time-span tree analyser has 13 adjustable
parameters, which include Stsrpgry, W, W,n,and W
{Table 3).

MusicXML GroupingXML MetricalXML
fl

Time-span tree]l ﬂ ll
Analyzer Current
Calculation of structure AR/ ART RRARAA/
head Strength [)!.’I.l'.‘r!i.‘.\'p(m(:’)

(strength of head]Applying TSRPR1,3,4,8,9 N
Choosing next- Next-level
level structure structure A\/ A/ K(\K(\K(\/

—

s (Contains n

nore than one hea

o Yes

Time-spanXML

Fig. 18. Processing flow of time-span tree analyser.

Metrical XML (37) J

‘N U, Drgrpri(2) [[srsrers |
—J. (40) BN 710 o i
GroupingXML “—A4(i))[2+Dy f.k—‘
2 ping timespan,(i) l _i_ J) TsreralisK)
. *| timespansize(i) | Wnn W, w,|) »
{imespanpos(i) e — _() =~
Lsiare — Drsrers(i) [Dumespan ()=~ p
Lond [s
" Diernnall)
MUSICXML — rsrprol?)
Z] - R
. [Drsrersa(d) (n): formula
£ N (43)
(39) . T
DTSRPRSb(") I'] Brmespan(’ ;) variable
[gTsrPRR] / ~
. - parameter |
RE{1,32,3b,4.8,9) o

Fig. 19. Parameters in TSRPRs.

Implementing A Generative Theory of Tonal Music”

6.1.1 Time-span segmentation

In the procedure of time-span reduction, we divide the
entire piece into hierarchical time-spans. We show the
division procedure in Figure 20, which is:

(1) Regard all of the resultant groups of grouping
analysis as time-spans.

(2) When a time-span in the lowest level includes more
than one note, divide it into two at the strongest beat.

(3) Repeat 2 recursively.

In the GTTM (Lerdahl & Jackendoff, 1983, pp. 156
157) there are two rules for time-span segmentation,
called segmentation rule | and segmentation rule 2.
Segmentation rule 1 corresponds to the first item and
segmentation rule 2 corresponds to the second item.

As a result, a music piece is formed into a binary tree,
1.e. a time-span tree, at each node of which the more
important branch extends upward as a head note. The
selection of a head at each node is hierarchically
computed from the lower level. Therefore, heads are
selected from leaves to root branches. For each level in
the hierarchy, we provide the following basic parameters
and the rule application principles.

6.1.2 Calculation of basic parameters

We calculate four basic parameters:

Number of dots

Hi
¢; Offset-to-onset Interval (OOT)
; Inter-onset interval (I01)

&; Difference in pitch

In the first three parameters, i represents the ith gap of
heads, that is, the gap between the ith and the (i+ 1)th

267

head while dot; is the number of dots of the ith head. i
indicates the order of heads at the current level of time-
span. The basic parameters are renewed at every hierarchy
of time-span because the number of heads changes as a
result of selecting heads at every hierarchy of time-span.

6.1.3 Application of TSRPRI (metrical position)

TSRPRI1 prefers a head with a stronger beat. We
normalize the strength between 0 and 1 and define the
likelihood of being a head by the number of dots divided
by the maximum number of dots.

Drsreri (i) = pi/ max ;. (39)

6.1.4 Application of TSRPR3 (registral extremes)

TSRPR3 concerns the pitch of a head. TSRPR3a selects
a higher pitch note as a head while TSRPR3b prefers a
lower one. Thus, Drsrpr3a(é) returns a higher value if &
is higher.

Drsrpr3a(i) = &/ m?.x ¢ (40)

Conversely, Dtsrpri3p(é) returns a higher value if ¢; is
lower.

Drsrprav(i) = 1 = &/ max & (41)

6.1.5 Application of TSRPR4 (parallelism)

TSRPR4 concerns the parallelism and prefers a head in a
parallel position in parallel time-spans. The parallelism
here is different from the melodic similarity: even though
two phrases are not similar, they may be regarded as
parallel due to the time-span reduction. The parallelism
is evaluated among heads in the current hierarchy’s

=== — folesfoes £ o2
z.%'f-if.s-_i—l.J_" S22 —p === ==
Metical dots 8 588 59888 888 8383888 83283888

[¢] [o] o] (¢} [o] [o] o

8 8 °
o
[ARTHTHTHRETE TTH)

m e | LIV LMV UL UL LUCALY |

on metrical structure

T T T
\ / \ / \ /[\/ AL)]
V V V. L i T\)
(2) Time-span | I I _ IL I
Segmentation depending | S~ I —r | \ J
on grouping structure | T I |
l i | |)

Procedure of time-span segmentation

Fig. 20. Time-span segmentation.

268 Masatoshi Hamanaka et al.

time-spans, and the evaluation method is the same as
that in the grouping and metrical analysis. The similarity
of head i in [m, m+r) and j in [m, m+3s) 1s shown by

=G (timespan(i), timespany(j), timespansize(i)),
(42)

A1)

where timespan,(i) is the first beat of the time-span
including i, and timespansize(i) is the length (the number
of beats) of the time-span including i We define
Drsrprali,), normalizing A(Z, Jj):

A(i,j)/ Amax timespanpos(i)
Dysrpra(i,j) = = timespanpos(j),
0 otherwise,

(43)

where A, =max(A(i, 1), A, 2),....a(i, L)) and time-
spanpos(i) is the interval from the inception of the time-
span to i. Note that i indicates the order of heads at the
current time-span level, and then Drsrpra(i, j) renews at
each level of time-span.

6.1.6 Application of TSRPRS (structural beginning)

TSRPRE prefers that a head i appear at the beginning of
the time-span. Drgrprsg(f) returns 1 if the head is at the
beginning position, and 0 otherwise.

N 1 i = istam
Drsrprg(i) = {0 otherwise, (44)

where isor is the head of the beginning of the time-span.

6.1.7 Application of TSRPRY (structural ending)

TSRPRY prefers that a head / appear at the tail of the
time-span. Dygrpro(f) returns 1 if the head is at the tail
position, and 0 otherwise.

N] l: [end:
Drsrero(i) = {0 otherwise, (43)

where i.nq is the head of the tail of the time-span.

6.2 Generation of time-span tree

We calculate the plausibility of the head D"™Pan(j) by
Drsrpri(d), Drtsrpr3a(d), Drsreriv(i), Drsrera(is J),

Drsrprs(?), and Drsrpro(f).
Btimespan(k) X STSRPR4

Dnmespan(i) _ if DTSRPR4(Z.» k) =1,

Btimespan(i) + Z .
k

il Drsrera(i, k) =0,
(46)

where

Bumcspm X STSRPRR (47)

Z Drsrpr, (i)

and R € {1, 3a, 3b, 8, and 9). B"™P2"(j) represents
weighted summation of Stsrpr, and Drsrpr,(f), (R € 1,
3a, 3b, 8, and 9), and D"™P(j) represents the sum of
BU™mesPan(py and summation of BU™PAN(k), where the ith
head and kth head are parallel and consequently
Drsrpra(i; k)= 1.

A hierarchical time-span tree is constructed by
iterating the calculation of the plausibility of the head
DUmePAn(jy for the current heads and choosing the next-
level heads (Figure 21).

4 I EETEEnEE S Q;’EP;{'L"IF)
? |L_Lu_ilL.J_I_LL.J_LLLLI L l..u_l.l.LLLUI‘:-.I.:I o
\ (A / Kz(/ﬂ////////}(/(//
/{;g-:"ffl;v g-h:n.‘*ém':ﬂ'f%'f\
D”.H'I"T 1 | Bete Bon. o 1 1
I_IL_I |_| 8N N

A A\/nu MA\/)
/&k-ﬁl:v'_r__r" CrerrEer i

. IT| ! Hl_Il — IL_II ||. Il . ||
A mm«\
(ﬁk'-:‘”:|'-=;|;;f'=“—'f =
N [l . I "”

A &ﬂ/&\ K\m)

P = i -—-r-‘.-. =

o f =g a | T ?.=."' =
(. E E EER
D"-'.’.:Il

1 1 | til
: I— i
_ /dk[j MJ
(" e Lo EOEPEEER P
plimess '.'.'li‘

(il

LA |
o m

Fig. 21. Selecting the next-level heads.

Implementing “A Generative Theory of Tonal Music” 269

If there are two candidates of a head in the current
hierarchy, we choose the next-level one 4 as 48.

/%:{"
J

The order of choosing the next-level head is the
reverse order of constructing time-spans in the time-span
segmentation, as described in Section 6.1.1. Dysrpr, (i)
and D"™%P¥(j) are renewed at each level of hierarchy,
since / indicate the order of heads in the current hierarchy
and changes at each hierarchy of time-spans.

Dtimespan<l~) < Dtimcspan (1)
—_)

otherwise, (48)

7. ATTA (automatic time-span tree analyser)

We have implemented exGTTM on a computer called
ATTA: Automatic Time-span Tree Analyzer. ATTA has
three distinctive features: an XML-based data structure,
implementation in Perl, and a Java-based GUI.

7.1 XML-based data structure

We use an XML format for all of the ATTA’s input and
output data structures. Each analyser in ATTA works
independently but is integrated with the other through
the XML-based data structure. As a primary input
format, we chose MusicXML (Recordare, 2007a) be-
cause it provides a common ‘interlingua’ for music
notation, analysis, retrieval, and other applications. We
designed GroupingXML, Metrical XML, and Time-
spanXML as the export formats for our analyser
(Figure 22). The XML format is very capable of
expressing the hierarchical grouping structures, metrical
structures, and timespan trees. Note elements in Group-
ingXML, Metrical XML, and Time-spanXML are con-
nected to note elements in MusicXML by using Xpointer
(W3C, 2002) and Xlink (W3C, 2001). We assume that the
distribution of a MusicXML or a standard MIDI file,
together with a grouping structure, metrical structure,
and time-span tree, would be useful for various musical
tasks such as searching and arranging.

MusicXML

7.2 Implementation in Perl

We implemented ATTA in Perl, so using CGT allows it to
function through the internet (available at http://
staff.aist.go.jp/m.hamanaka/atta/). We believe that the
availability of this kind of resource is very important for
the music-researching community. ATTA is the first
application for automatically acquiring a time-span tree.
We hope to benchmark ATTA against other systems to
be constructed in the future.

Figure 23 shows screen snapshots of the grouping-
structure analyser, metrical structure analyser, and time-
span tree analyser. The left side of each has scrolling bars
for controlling adjustable parameters, and the right side
shows the analysis results.

7.3 Java-based GUI

Although our analyser implemented in Perl has a simple
user interface, we also developed a graphical user
interface in Java called GTTM editor (Figure 24).
GTTM editor has two modes, the automatic-analysis
and manual-edit modes. The automatic-analysis mode
performs analysis by using our analyser and displays the
results. The structures change depending on the config-
ured parameters. The manual-edit mode assists in editing
the grouping structure, metrical structure, and time-span
tree. It can be used to edit the results of the automatic-
analysis mode.

8. Experimental results

We evaluated the performance of the music analyser
using an Freasure, Which is given by the weighted
harmonic mean of Precision P (proportion of selected
groupings/dots/heads that are correct) and Recall R
(proportion of correct groupings/dots/heads that were
identified).

(49)

| Time-spanXML
-« - <part [d="P1">
- <measure numbear="1">
+ <notle>
|+ <note> ——————
|_=+ <noles> «————— 1
|t <nole>+——""""" |
| </measure >
(™| -<measure number="2"= ——
i i"“'--l- <nole= «——
tenotere——07 0
+ <note>s——r0ro1 1« =
+ <nolas ~—— —
+<nole>e— oo |
T </measure >
| “_- <measure number="3"> |

1= + <nota> ~—
| :
|

+ +<nola id="P1-1-2"
- + =nole id="P1-1

Fig. 22. GroupingXML, Metrical XML, Time-spanXML, and MusicXML.

270 Masatoshi Hamanaka et al.
Time-span tree analyzer
)
The eyt of gt A 2 et
el = :’:
i - 3 i
P [
[TR] O) s
i rome iy g e |
s ol -1 e
F s L. L | = s
Grouping-structure analyzer :5"'"' R i P s
= sen e - e
: T 5 b b etz
The st o st . | } 7 b
Sortia L N seh Gk iy
S-IWH- T i3 netes O [B
| e p— e Y1 H# e
B ; Elase 7 2 J %) fraaia
3 trew - (AT Yl omm i
§oren e ' B e
5 e AT . i it
5 oz " 2 i ‘ s
e - . 5 A e P r1 e | a Y e | e
Suem nx : T ez & 3 tia rete
5 orss R oty + 3 s it
SR == T - ¥ g e
! s triors e R ey e et
7 g L8 P L b P ' - [ity
'l"f-f"‘ ay v e (R lE =
< e E 1 e CE et
I Lo -.-n—-‘- ;“ ahut 0 S| sty ‘4 21y .
v P 1t 4 sy i 11
e i e L
= b e+ 3 LRt [
2 Richanenliiointnad o L 1) wm lhmt
Cas errxcrpCIN I ; 5 FE
ey TR : F : N
o ; Hirat Lo foam [~ e — i
o Lo ticedancal . . /|
s | T v um = I
| B il a y.
| i i i T SR
| musRmSs :
I' Fetnzt t
|

Fig. 24. Screen snapshot of Java-based GUL

In calculating Fipeasure ©f the grouping analyser and
time-span tree analyser, we did not take into considera-
tion the possibility that a low-level error is propagated

up to a higher level, we counted wrong answers without
regard to the differences in grouping levels and time-
span levels.

Implementing A Generative Theory of Tonal Music” 271

8.1 Evaluation data

The evaluation by Freasure required us to prepare
correct data for the grouping structure, metrical
structure, and time-span tree. Because there is no
database containing the analysis results by GTTM, we
prepared a novel type of evaluation data. The eval-
uation data include a pair of score data and correct
data.

8.1.1 Score data

We- collected one hundred 8-bar-long, monophonic,
classical music pieces that include notes, rests, slurs,
accents, and articulations entered manually with music
notation software called Finale (PG Music, 2007). In
addition, we exported the MusicXML by using a plugin
called Dolet (Recordare, 2007b).

The basic parameters calculated in Sections 4, 5, and 6
include parameters that cannot be acquired from
MusicXML directly. For example, we could not acquire
p; from MusicXML directly because its calculation
requires real offset times & but MusicXML only
describes the formal offset time .

In the experiment, we defined & so that the duration
rate of the formal length of a note and the real length of a
note would be 1.0 where the note has a slur, and
otherwise it would be 0.8. We also defined the value of
velocity v so that it would be 1.0 where the note has an
accent, otherwise it would be 0.8.

8.1.2 Correct data

We asked a musicology expert to manually analyse the
score data faithfully with regard to GTTM (Lerdahl &
Jackendoff, 1983), using the manual-edit mode of
GTTM editor to assist in editing the grouping
structure, metrical structure, and time-span tree. Three
other experts crosschecked these manually produced
results.

Table 4. Fieasure fOr our method and baseline.

8.2 Parameter tuning

The grouping, metrical and time-span tree structures will
change depending on the adjustable parameters. To
evaluate the baseline performance of our system, we used
the following default parameters: S e = 0.5, Tryies=0.53,
W,=0.5, W,=0.5, W,=0.5, and ¢ =0.05. The range of
parameters of Tryes, Wy, We, W,is 0 to 1.0 and resolution
is 0.1. The range of a parameter of ¢ is 0 to 0.1 and
resolution is 0.01.

In the current stage, the parameters are configured by
humans because the optimal values of the parameters
depend on the piece of music. The experimenter used
GTTM editor and a GUI for configuring parameters.
When a user changes the parameters, the hierarchical
grouping/metrical/time-span tree structures change as a
result of the new analysis, and the new results are
displayed on GTTM editor. [t took us an average of
about 10 min per piece to find the plausible tuning for
the set of parameters (Tables 1, 2, and 3). As a result of
configuring the parameters, each Feasure Of our analyser
outperformed the baseline (Table 4).

8.3 Acquisition of low-level grouping boundary

Here, we discuss whether the low-level grouping
boundary was acquired properly. GTTM (Lerdahl &
Jackendoff, 1983) presents an analysis of the Mozart
Sonata K. 331 as an example that can be interpreted in
two ways: as a grouping structure that has a boundary
between note 4 and note 5 (figure 25(a)) and as a
grouping structure that has a boundary between note 5
and note 6 (figure 25(b)). The system can output both
grouping structures properly as a result of using exGTTM
for analysis by configuring Sgpr2a, SGprab, and Sger3a.
Figure 26 shows the analysis results of Chopin, Ballade
op. 23, which provide an example of wrong results. The
distinctive feature of this musical piece is that a
characteristic of the melody changes in the middle of
the piece. Figure 26(a) shows the analysis results in which

Grouping Structure

Metrical Structure Time-Span Tree

Melodies Baseline Our method Baseline Our method Baseline Our method
1. Moments musicaux 0.18 0.56 0.95 1.00 0.71 0.84
2. Wiegenlied 0.76 .00 0.83 0.85 0.54 0.69
3. Trdumerei 0.60 0.87 0.76 1.00 0.50 0.63
4. An die Freude 0.12 0.73 0.95 1.00 0.22 0.48
5. Barcarolle 0.04 0.54 0.72 0.79 0.24 0.60
Total (100 melodies) 0.46 0.77 0.84 0.90 0.44 0.60

272
5 & 78 9 10 1
— r) = P S————
= f o _— i
é—ﬁ .._|. o :'_ ¥ '__- i
SAa 2Ab 2Aa 21) C;a ib Ea
4 Ja 4 3a
a 4
Analysis result (@) 8.0q,=0.5, §.002,=0.5, 85655,=0.5
e N | ,
Q9
N M A
Analysis result (b) Sg,=0.3, 8,0,0,=0.7, 8..45,=0.3
Blo\v(l)
Tl ; [| l | | | ' i
0
L J\ \

Fig. 25. Analysis of Mozart Sonata K. 33].

Masatoshi Hamanaka et al.

the parameters arc configured so that the Fieasure of the
entire piece will be maximized. Although the second half
of the results coincides with the correct data, there are
many non-coincident structures in the first half of the
piece. At the same time, when we configure the para-
meters so that the Feasare O the first half of the piece will
be maximized, there are many non-coincident structures
in the second half of the piece (figure 26(b)). This is the
only melody investigated where a characteristic of the
melody changes in the middle of the piece. It is necessary
to further investigate how to analyse such a piece.
Figure 27 shows the analysis results for Bizet,
L' Arlesienne, Farandole as another example of wrong
results. In the correct data, there is a group that only has
a single event at the end of the piece. However, we
implemented exGTTM so that it necessarily holds

N .
§ir—
Correctdata A __A A \ A A)
2a 2b 2a 2a 2a
2b 2b
Analysis result (a) 52
Sern2=0-3, Seping=0.0, S 1.=0.0, Soie =85 3= &4 100,80 0.0,
Tim=0.5, um—ow W, 05, W=0.5
Blow(i)
7‘:““] ‘ ‘ ‘
» [
\ AN /\ N\ A J
2 % daza 2a 2 3a 22 3 %
2b 2b Ja
Analysis result (b) 3
Sern=0:5; Sog 57001, Sonn,=0. 1, S 357500 558 3700, § 0.1,
Ti=0.1, W,=1.0, W;=0.0 , =08
Blow(l')
1| 11 | L
x . | L] ;
N I\ AN I\ /\ ;_/_/wuv
2a 2b 3a 2a 2b Ze 2b Sa 2bZa Ja 3a

2b
Ja

2b

Fig. 26. Analysis of Chopin, Ballade op. 23.

3a

Correct data

W AA A A A A A A A A A AL A AR
Zb 2b 2b

%2 34 3d 3d 28 %a 34 39
5 5 3d 5
Analysis result 6 5
SGPRZa 05 St;‘u b 10 S Ja r.|| ib S.Iu 3 00 MGPR 3d IO ‘S’-\-i=l\‘6=0'57
TIns0.5, W, 0.0, W =1.0
Blow(l')
[1] NN L
W AAA A A A A A AAA AN A}
2b 2b 2b3aZa 3d 3d3a3d 2a b 2b Zb3aza 3 3d
3d

Fig. 27. Analysis of Bizet, L’Arlesienne, Farandole.

Implementing ‘4 Generative Theory of Tonal Music”

GPRI, which prefers to avoid a single event. It is
necessary to further investigate the differences between a
piece that has a group containing only a single event and
a piece that does not have such a group.

8.4 Acquisition of hierarchical grouping structure

Here, we discuss whether the hierarchical grouping
structure was acquired properly. Figures 28 and 29 are
the histograms for comparing the correct data and
system output by numbers of groups and numbers of
grouping hierarchies. The system output tends to have
larger numbers of both groups and hierarchies than the
correct data, since we implemented exGTTM so that it

35

0k m Correct data
O System output

25

N
o

15

Number of melodies

20 30 40 50

Number of group

0 10 60 70 ~

Fig. 28. Numbers of groups in correct data and system output.

o
o
|

@ m Correct data

ig 40F O System output

©

£ 30

2 20

QQ

e}

£ 10

>

Z 0 e | I)
8 9 10~

Number of group

Fig. 29. Numbers of grouping hierarchies in correct data and
system output.

273

must hold GPRS, which subdivides groups into two
parts. For example, the correct data of Tchaikovsky,
Album pour enfants, Waltz (Figure 30) contain the
three lowest-level groups (notes 1-3, notes 4- 6, and
notes 7-9) and combine a group at the next grouping
level. However, in the system output, notes [— 3 and notes
4 -6 are first combined and then notes 1 —6 and notes 7—9
are combined. Therefore, the analysis result tends to have
larger numbers of both groups and hierarchies than the
correct data. In the evaluation data, there are 58 pieces
that contain a group consisting of three low-level groups,
and the average Fieasure Of the 58 pieces is 0.75, while the
average [measure Of the other 42 pieces is 0.81. It is
necessary to further investigate the algorithm for gen-
erating a group that has three low-level groups.

8.5 Acquisition of metrical structure

Although the average Fieasure Of the metrical structure
analyser is 0.90, the Fieasures Of Some pieces are very low.
For example, Bach, Toccata and Fugue in D minor
(Figure 31) contains a quintuplet, which is not aligned in
simple duple/triple time, and cannot be analysed
properly in the current exGTTM. In the evaluation data,
there are two pieces that contain a quintuplet and one
piece that contains septuplets, and the average Freasure Of
the three pieces is 0.25, while the average Fieasure Of the
other 97 pieces is 0.92. We plan to extend the system to
allow quintuplets and septuplets.

8.6 Acquisition of time-span tree

The average Fpeasure Of the time-span tree analyser is
0.60, which is lower than those of the grouping-structure
analyser and the metrical-structure analyser. Figure 32
shows the analysis results of Beethoven, Sonata Op. [3,
which is an example of a piece having a low Fleasure
According to the correct data of the time-span tree, we
can separate the entire melody into four time-spans,
which are notes 1 -3, notes 4-9, notes 10— 16, and notes
17—23. However, the correct data of the grouping
structure also separates the entire melody into four

1 23 4 56 78 9 10 1112 13 14 1516 17
gt = e e ——
3'& ZEEEE ';E—g E= e e e e
L2 -
Correct data \ A A I\ A =
N N J
N J
Analysis result v A J
AN N\ AN M -/
\ N J
“ J

Fig. 30. Analysis of Tchaikovsky, Album pour enfants, Waltz.

274

Correct data

System output

Fig. 31. Analysis of Bach, Toccata and Fugue in D minor.

Correct data of time-span tree

Masatoshi Hamanaka et al.

=iy _LE — = —— —
r ara ; — == - I o —
;e — I = = . = =t - T !
2 = | = J = =i =t i — L— o 3 '! a ﬂ L']. ;] _i
1 2 3 4 56 7 8 9 0 12 1314 15 16 17 18192021 22 23
Correct data of grouping structure I A, —_—N ’
1Y A A N J
L A J
\ J
Correct data of metrical structure
598°8°0°8%8°8°8°8°8°8°8%8°8°8°8°8°8°8°8°8°8°8 808780875788 878087880008 8 5 5°8°5°8°5°5°8°0°2°8°8°5°5°5 58585 5 5 %
§8°8°8°8°8°5°%8 §°8°3 s %838 s °3 s°8°3 $°8°% 3°8°s
H H H H S H

ooo0

a o
o

00000000
o
00000

Analysis result of time-span tree analyzer

Frocanre=0.36

o000
ooo0o

o
o
o
a
o
o

__é..‘..,:’_p__g___:____
L2

1 2 3 4 5§56 7 8 9

Fig. 32. Analysis of Beethoven, Sonata, Op. 13.

groups, which are notes 1 -4, notes 5-9, notes 1017,
and notes 18—-23. Therefore, these correct data violate
time-span segmentation rule 1 (Lerdahl & Jackendofl,
1983, p. 146), which defines that “Every group in a piece
is a time-span in the time-span segmentation of the
piece.” In the current system, we have implemented the
time-span segmentation so that time-span segmentation
rule | will always hold. It is necessary to further

v

12 1314 15 16 17 18192021 22 23

investigate the difference between a piece in which time-
span segmentation rule 1 holds and a piece in which this
rule does not hold.

In the experiment, we cannot acquire the tendency of
the parameter set. In other words, we cannot acquire an
efficient parameter set for every piece. This result
indicates that the parameter set depends on the character
of each piece and that we can classify pieces by using the

Implementing A Generative Theory of Tonal Music” 275

Analysis result (a) S =
Fmeasure =0.84

[

S =1.0,S
TSRPR1 TSRPR3b TSRPRA

r,9::|- e e e =
b et
(o= T =

i 2 3 4 5 6 7 8

Analysis result (b) ST Fsmna S, a7

TSRPR1 TSRPR3

Fmeasure=0.89

=S_ =8 _ =0.0,W=W==0.5

TSRPRA SRPRA TSRPRY

Fig. 33. Analysis of two pieces having the same parameter sets. (a) Beethoven, Turkish March. (b) English Traditional, Green Sleeves.

parameter set after tuning. Figure 33 shows the analysis
results of two pieces, which are tuned with the same
parameters, i.e. Beethoven, Turkish March and English
Traditional, Green Sleeves. The numbers at the separa-
tions of the tree in Figure 33 indicate the rules that hold.
As a result of comparing two pieces, the same rules hold,
i.e. TSRPR1 and TSRPR3b. We plan to investigate the
classifications of genre and composer by using the
parameter sets.

9. Conclusion

We developed a music analysing system called ATTA
that derives the time-span tree of GTTM. The following
three points are the main results of this study.

o FExtended GTTM proposed and implemented
We proposed an extended GTTM for computer
implementation. The difficulty with the computer
implementation of GTTM has been clarified (Heikki,
2000), but no radical solution has been proposed. We
re-formalized the rules using a numerical expression
with adjustable parameters so that it can separate the
definition and ambiguity from the analysed material.

We immplemented an actual working system to
acquire the hierarchical grouping structure, metrical
structure, and time-span tree of music, based on
GTTM. This system, called ATTA, automatically
acquires the time-span tree by configuring the
parameters without manually analysing them by
experts in musicology. ATTA is the first application
for automatically acquiring a time-span tree. We can
benchmark ATTA against other systems, since the
ATTA can be used through the internet by using a
CGI application, as described in Section 7.2.

Full externalization and parameterization

As we discussed in Section 3.3.1, we have distin-
guished three kinds of parameters. Among them, we
have fully externalized the parameters of the first
and the second categories, i.e. those which are ex-
plicitly or implicitly mentioned in GTTM (Lerdah! &
Jackendoff, 1983). Also, we could supplement those
of the third category sufficiently to reify the preference
rules. We would like to justify this claim as follows.

Our working hypothesis is that we should apply all
of the rules to the applicable parts. Because some
rules refer to local structures and others to global
ones, the process necessarily becomes from both the
top-down and bottom-up directions, and it becomes

276 Masatoshi Hamanaka et al.

entangled in spaghetti of dependency as shown in
Figures 6, 14 and 19. Thus, our objective becomes
unravelling all of these messy relations, to make the
procedure deterministic. Toward this goal, we first
gave a threshold (the first category) to each rule to
judge whether the rule is applicable. Then, we gave a
weight (the second category) to each rule to fix the
order of rule application. Lastly, the global con-
straints represented by these parameters were re-
calculated every time the processing [or generating a
hierarchical structure moved onto an adjacent layer.
As far as the process was made to be deterministic, we
contend that those explicit/implicit parameters were
fully externalized.

The parameters of the third category mainly con-
cern practical implementation and are rather indepen-
dent of GTTM; thus, the parameters are insignificant
from the musicological point of view. Since there
remains no ambiguous step in the analysing process,
we consider that they are sufficiently elucidated.

e A set of correct data constructed and evaluated
We assembled a set of one hundred correct data
items, which is the greatest database of analysed
results from GTTM to date. We plan to make this
database publicly available in the near future.

Our experimental results show that, as a result of
configuring the parameters, our music analyser out-
performs the baseline Fieasure. The set of parameters
tuned for a certain family of music pieces would likely
reflect the common features of that family. Thus, the
idealized parameter set for a music family, if any,
would presumably analyse a new piece correctly,
prior to human analysis.

Among the four sub-theories of GTTM, i.e. grouping-
structure analysis, metrical-structure analysis, time-span
reduction, and prolongational reduction, we have im-
plemented the first three sub-theories in this study. Since
the prolongational reduction involves harmonic stability,
it requires the analysis of tonal structure, including chord
and/or key recognition and its cadential progression.
Because our objective in this study is to clarify and
exemplify the computability of GTTM by externalization
and parameterization, we have avoided the complication
of tonal analysis; namely, we have postponed the
mechanization of the fourth theory and dared to stay
in the analysis of monophonic music. As a result, in
reductions heads are restricted to the ordinary ones, and
Jusion, transformation, and cadential retention (Lerdahl &
JackendofT, 1983, pp. 152-158) have been disregarded.
Naturally, we are aware that the result of prolongational
reduction would be fed back to the time-span tree.
Therefore, the implementation of the fourth theory is an
urgent and emergent goal of our future research.

We plan to develop further systems, using time-span
trees and the results of the music analyser, for other

musical tasks, such as searching, harmonizing, voicing,
and ad-libbing. Such systems will help to evaluate the
effectiveness of implementing GTTM as a way to provide
musical knowledge.

References

Cambouropoulos, E. (2001). The Local Boundary Detection
Model (LBDM) and its application in the study of
expressive timing. In Proceedings of ICMC2001, Havana,
pp. 290-293.

Cooper, G. & Meyer, L.B. (1960). The rhythmic structure of
music. Chicago, IL: The University of Chicago Press.
Cope, D. (1996). Experiments in musical intelligence.

Madison, WI: A-R Editions, Inc.

Ferrand, M., Nelson, P. & Wiggins, G. (2003). Memory and
melodic density: a model for melody segmentation.
Proceedings of XIV CIM 2003, Firenze, pp. 9598,

Goto, M. (2001). An audio-based real-time beat tracking
system for music with or without drum-sounds. Journal
of New Music Research, 30(2), 159—-171.

Hamanaka, M. & Hirata, K. (2002). Applying Voronoi
diagrams in the automatic grouping of polyphony.
Information Technology Letters, 1(1), 101 -102,

Hamanaka, M., Hirata, K. & Tojo, S. (2004). Automatic
generation of grouping structure based on the GTTM.
Proceedings of ICMC2004, Miami, pp. 141 - 144,

Hamanaka, M., Hirata, K. & Tojo, S. (2005a). Automatic
generation of metrical structure based on the GTTM.
Proceedings of ICMC2005, Barcelona, pp. 53— 56.

Hamanaka, M., Hirata, K. & Tojo, S. (2005b). ATTA: auto-
matic time-span tree analyzer based on extended GTTM.
Proceedings of ISMIR2005, London, pp. 358 — 365.

Heikki, V. (2000). Lerdahl and Jackendoff revisited. Avail-
able online at: http://www.cc.jyu.fif ~ heivalko/articles/
lehr_jack.htm

Hewlett, W.B. (Ed.) (1998). Melodic similarity: concepts,
procedures, and application. Computing in musicology,
volume 11, Cambridge, MA: The MIT Press.

Hirata, K. & Aoyagi, T. (2003). Computational music
representation on the generative theory of tonal music
and the deductive object-oriented database. Computer
Music Journal, 27(3), 73-89.

Hirata, K. & Hiraga, R. (2003). Ha-Hi-Hun plays Chopin’s
Etude. Working Notes of IJCAI-03 Workshop on
Methods for Automatic Music Performance and their
Applications in a Public Rendering Contest, pp. 72—73.

Hirata, K. & Matsuda, S. (2003). Interactive music
summarization based on generative theory of tonal music.
Journal of New Music Research, 32(2), pp. 165—177.

Lerdahl, F. & Jackendofl, R. (1983). A generative theory of
tonal music. Cambridge, MA: The MIT Press.

Marsden, A. (2005). Generative structural representation
of tonal music. Journal of New Music Research, 34(4),
pp. 409-428.

Narmour, E. (1990). The analysis and cognition of basic
melodic structure. Chicago, IL: The University of
Chicago Press.

Implementing “A Generative Theory of Tonal Music” 277

Nord, T. (1992). Toward theoretical verification: developing
a computer model of Lerdahl and Jackendoff’s generative
theory of tonal music. PhD thesis, The University of
Wisconsin, Madison, USA.

PG Music Inc. (2007). Finale. Available online at: http://
www.pgmusic.com/finale.htm

Recordare, LLC. (2007a). MusicXML 1.l Tutorial. Avail-
able online at: http://www.recordare.com/xml/musicxml-
tutorial.pdf

Recordare, LLC. (2007b). Dolet 3 for Finale. Available
online at: http://www.recordare.com/finale/index.html

Rosenthal, D. (1992). Emulation of human rhythm percep-
tion. Computer Music Journal, 16(1), 64—76.

Russell, S. & Novig, P. (2002). Artificial intelligence: a
modern approach. Englewood Cliffs, NJ: Prentice Hall.
Schenker, H. (1979). In E. Oster (Trans. and Ed.) Free
composition (Der freie Satz). New York: Longman.

Selfridge-Field, E. (1998). Conceptual and representational
issues in melodic comparison. Computing in Musicology
11 (pp. 3-64). Cambridge, MA: The MIT Press.

Stammen, D.R. & Pennycook, B. (1994). Real-time seg-
mentation of music using an adaptation of Lerdahl
and Jackendoff’s grouping principles. Proceedings of
ICMPCI1994, Liege, pp. 269-270.

Temperley, D. (2001). The cognition of basic musical
structures. Cambridge, MA: The MIT Press.

Todd, N. (1985). A model of expressive timing in tonal
music. Musical Perception, 3(1), 33—58.

W3C (2001). XML Linking Language (XLink) Version 1.0.
Available online at: http://www.w3.org/TR/xlink/

W3C (2002). XML Pointer Language (XPointer). Available
online at: http://www.w3.org/TR/xptr/

Widmer, G. (1993). Understanding and learning musical ex-
pression. Proceedings of ICMC1993, Tokyo, pp. 268 —275.

