
TREE-STRUCTURED PROBABILISTIC MODEL OF MONOPHONIC WRITTEN MUSIC
BASED ON THE GENERATIVE THEORY OF TONAL MUSIC

Eita Nakamura1, Masatoshi Hamanaka2, Keiji Hirata3, Kazuyoshi Yoshii1

1Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
2Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan

3Future University Hakodate, Hakodate 041-8655, Japan

ABSTRACT

This paper presents a probabilistic formulation of music language
modelling based on the generative theory of tonal music (GTTM)
named probabilistic GTTM (PGTTM). GTTM is a well-known mu-
sic theory that describes the tree structure of written music in anal-
ogy with the phrase structure grammar of natural language. To de-
velop a computational music language model incorporating GTTM
and a machine-learning framework for data-driven music grammar
induction, we construct a generative model of monophonic music
based on probabilistic context-free grammar, in which the time-span
tree proposed in GTTM corresponds to the parse tree. Applying
the techniques of natural language processing, we also derive super-
vised and unsupervised learning algorithms based on the maximal-
likelihood estimation, and a Bayesian inference algorithm based on
the Gibbs sampling. Despite the conceptual simplicity of the model,
we found that the model automatically acquires music grammar from
data and reproduces time-span trees of written music as accurately
as an analyser that required elaborate manual parameter tuning.

Index Terms— Statistical music language model, GTTM,
PCFG, time-span tree analysis, statistical grammar induction

1. INTRODUCTION

Music transcription is a challenging topic in music processing. For
this, acoustic modeling of musical sounds has been widely stud-
ied [1]. However, this is not sufficient to remove all ambiguities
of transcription due to acoustic variations, and using prior knowl-
edge on the output musical score is in order. The same situation
happens in speech recognition, where the knowledge on linguistics
is incorporated in the language model. The purpose of this study is
to construct a model that can capture the grammar of written music.

Musical pieces have a hierarchical structure. Notes are grouped
into motives, which are grouped into phrases, which are grouped into
musical sentences (or passages), which are grouped into sections,
etc. In addition, some notes are more salient than adjacent notes.
This structure of music resembles the phrase structure of natural lan-
guage [2], which can be represented as a syntax tree. The generative
theory of tonal music (GTTM) [3] attempts to model such a hierar-
chical structure of music. GTTM proposes to use a tree representa-
tion called the time-span tree to describe the relative importance of
notes. The time-span tree can be interpreted as a simplification or
reduction process of a musical passage (Fig. 1). GTTM also pro-
poses rules to derive a reasonable time-span tree for a given musical
passage, which combine musical knowledge such as counterpoint
theory [4], harmonic theory [5], and Schenkerian analysis [6].

This work is partially supported by JSPS KAKENHI Nos. 24220006,
26700020, 26280089, and 15K16054, and JST CREST.

&
&
&
&

##
##
##
##

c
c
c
c

w
w
˙ ˙
œ œ œ œ

w
w
˙ ˙

.œ jœ ˙R
ed

uc
tio

n
(G

TT
M

)

G
en

er
at

io
n

(th
is

 s
tu

dy
)

& ## c œ œ œ œ .œ jœ ˙

˙

w

level

level

level› Time-span tree

The man saw the dog
DT N V DT N

NPNP
VP

S Parse tree

‘Left-type’ and ‘right-type’ production rule

&
&

w
.˙ œ

&
&

w
˙ ˙

Principal PrincipalSubordinateSubordinate

1 1

3/4 1/4 1/2 1/2

G G

G GE E

Fig. 1. Example of time-span tree and the reduction and generation
of a musical passage (top). The two types of production rules in the
probabilistic GTTM (bottom).

The computational formulation of GTTM has been studied in
the last decades [7–10] because the prescribed rules of GTTM are
not quantitatively or computationally formalised. Based on parame-
terisation of the rules in GTTM, an automatic time-span tree analyser
(ATTA) was implemented [7]. The adjustment of the 46 parameters
remained as a problem. Recently a probabilistic method for time-
span tree analysis called σGTTM III is proposed, which can learn
some parameters from labelled music data [10]. There are other no-
table studies on automatic music analysers [11, 12]. Although these
studies provide grouping structure analysis, metrical analysis, and
reduction analysis, they are not a generative model and cannot be
directly applied to music transcription [1] or automatic music gener-
ation and arrangement [13]. Moreover, these studies have not taken
advantage of the developed machine-learning techniques in natural
language processing (NLP) [14–17].

To solve these problems, we formulate a probabilistic genera-
tive model of music based on GTTM named the probabilistic GTTM
(PGTTM). We interpret that the time-span tree represents a produc-
tion process of musical notes and formulate PGTTM with probabilis-
tic context-free grammar (PCFG) [18, 19]. In contrast to the phrase
structure grammar of linguistics where an intermediate node corre-
sponds to grammatical categories such as ‘NP’ and ‘VP’, a node of
the time-span tree represents a musical note (Fig. 1). In addition,
two types of production rules must be distinguished to indicate the
relative importance of children notes, and there are constraints on
the pitches and note values (lengths) to consistently describe the re-
duction/generation process.

There are other works that applied PCFG models for music. The
idea of using PCFG for the probabilistic formulation of GTTM is
already explored in σGTTM III [10], which is not fully formulated

as a generative model of musical notes and requires other analysing
tools [7, 8] to obtain the time-span trees. A two-dimensional tree-
structure model was proposed [20] and applied for multi-pitch anal-
ysis. Our study shares the same interests in unsupervised learning of
music language model. A PCFG model for harmonic analysis was
proposed in [21]. The main contribution of this study is to provide
an explicit construction of a statistical music language model that
integrates GTTM and a machine-learning framework for inducing
music grammar from data. In this study, we confine ourselves to
monophonic music.

We evaluate the proposed PGTTM in terms of the accuracy of
time-span tree analysis. We examine the performance of the model
with both supervised and unsupervised learning, and compare the re-
sults with previously proposed analysers. We found that the PGTTM
performs as accurately as ATTA. This is encouraging as PGTTM is
conceptually simple and does not require elaborate parameter tun-
ing. Error analyses show that whereas local tree structures were rel-
atively well estimated with the PGTTM, the higher-level structures
were poorly estimated. The result suggests the importance of in-
troducing latent grammatical categories into the PGTTM. Ideas for
further refinements are given at the end.

2. PROBABILISTIC GTTM (PGTTM)

This section explains the proposed model.

2.1. Basic model

Each musical note is represented as a pair (p, r) of pitch p and note
value r. We can use either spelled pitches or integral pitches, and
the set of possible pitches is denoted by Ωp. A rest is represented
by a symbol ‘R’, which we also include in Ωp. We define the note
value as the score-written length of the note relative to a whole note
(a quarter note has a r = 1/4, a dotted half note has a r = 3/4,
etc.). The set of possible note values is denoted by Ωr . Then a
monophonic passage can be represented as a sequence (pn, rn)Nn=1,
where N is the number of notes and rests.

A PCFG model [18] is represented with the set of terminals ΩT ,
the set of non-terminals ΩN which contains the start symbol S, and
the set of production rules R. In the Chomsky normal form, a pro-
duction rule A → α (A ∈ ΩN , α ∈ ΩN×ΩN ∪ ΩT) is associated
with a probability value P (A→ α). The symbolA and the symbols
in α in a production rule will be called the parent and the children,
respectively. Given a sequence of non-terminals w = w1 · · ·wN
(wn ∈ ΩT), a set of production rules to derive w from S is called a
derivation ofw, which can be represented as a parse tree (Fig. 1).

In the probabilistic formulation of GTTM, we need the follow-
ing modifications and extensions of this ordinary PCFG. First, the
parent and the children of a production rule should be represented
as musical notes. An exception is the most top production of notes
from the start symbol, which will be explained in the next paragraph.
Second, to describe the structure of the principal note vs. the subor-
dinate note, we distinguish two types of production rules; one has the
principal note on the left and the other has it on the right. Then a pro-
duction rule can be written in the form (p, r)→ s(pL, rL)(pR, rR)
where p, pL, pR ∈ Ωp, r, rL, rR ∈ Ωr , and s = L,R indicates that
(ps, rs) is the principal note. Finally, since the time span must be
conserved in producing a note, we must have r = rL + rR, and thus
we can write rR = r − rL. The fact that the principal note has the
same pitch as the parent note requires p = ps (Fig. 1).

Let us now define the PGTTM. The production process begins
with the start symbol S with a note value rS , which corresponds to
the total note value of a musical passage. The production rules are
either of the form (S, rS) → s(pL, rL)(pR, rS−rL) or (p, r) →

s(pL, rL)(pR, r−rL) where p, pL, pR ∈ Ωp, r, rL ∈ Ωr , and
s = L,R. The associated probabilities are written as P

(
(S, rS) →

s(pL, rL)(pR, rS−rL)
)

and P
(
(p, r) → s(pL, rL)(pR, r−rL)

)
,

which satisfy the following normalisation conditions:∑
s,pL,pR,rL

P
(
(S, rS)→ s(pL, rL)(pR, rS−rL)

)
= 1, (1)

∑
s,pL,pR,rL

P
(
(p, r)→ s(pL, rL)(pR, r−rL)

)
= 1. (2)

There is a constraint that P
(
(p, r) → s(pL, rL)(pR, r−rL)

)
= 0

unless p = ps as explained above, and we also assume that rests
must not be a principal note so that the probability is zero unless
p ∈ Ωp\{R}. A set of production rules that yields a given musical
passage is called a time-span tree.

The production probabilities strongly depend on the key of the
musical passage, and this dependence can be theoretically described
by first considering a different PGTTM for each of 24 keys (major
keys and minor keys on 12 pitch classes) and then constructing their
mixture model. In the following we consider a situation that the key
is known in advance, so all passages can be transposed to C major or
C minor.

2.2. Simplifications and refinements

Simplifications of the PGTTM described in Section 2.1 are necessary
if we are to derive computationally tractable inference algorithms.
First, we assume that the production rule probabilities are indepen-
dent for pitch and note values. This means that the production rule
probability is factorised as follows:

P
(
(p, r)→ s(pL, rL)(pR, r−rL)

)
= P s(s)P p(p→ spLpR)P r(r → srL(r−rL)) (3)

where
∑
s P

s(s) = 1,
∑
pL,pR

P p(p → spLpR) = 1, and∑
rL
P r(r → srL(r−rL)) = 1, and similarly for the pro-

duction rules from S. Second, we represent the pitch with an
integral pitch class, and thus Ωp = {C,C#,· · · ,B,R} (where
C#=D[etc.). We will use the following notations: φs = P s(s),
θsppLpR = P p(p → spLpR), ρsrrL = P r(r → srL(r−rL)),
and Θ = (φs, θsppLpR , ρsrrL)s,p,pL,pR,r,rL . Finally, we assume
that the probabilities for note values are scale invariant so that
P r(r → srL(r−rL)) is a function of rL/r and not separately de-
pendent of r and rL. The probability of a time-span tree T is given
as

P (T |Θ) =
∏

s,p,pL,pR,r,rL

(
φsθsppLpRρsrrL

)c((p,r)→s(pL,pR,rL);T)

where c((p, r) → s(pL, pR, rL);T) is the number of times that the
production rule (p, r)→ s(pL, rL)(pR, r−rL) appears in T .

It has been noted that the choice of the principal note is influ-
enced by the magnitude relation of metrical weights of the relevant
note pair (Rule TSRPR 1 in [3]). Here, the metrical weight of a note
indicates the relative strength of the metrical (beat) position of its
onset [22]. To incorporate this preference rule, we allow that the
probability P s depends on the relative metrical weights of the rele-
vant note pair. If we represent the metrical weights of note (pL, rL)
and (pR, rR) as ωL and ωR, P s take different values depending on
whether ωL/ωR is less than, equal to, or greater than unity.

2.3. Bayesian formulation of the PGTTM

As we explain in Sec. 3, we can derive an unsupervised learning
algorithm for PGTTM based on the maximal-likelihood principle.
An alternative way of unsupervised learning is Bayesian inference
[14]. With the Bayesian formulation, we can develop a Monte-Carlo

method for inference that can learn parameters without getting stuck
in local optima.

For Bayesian inference, we introduce a prior distribution for the
probabilistic parameters of the PGTTM. Since the production-rule
probabilities obey categorical distributions, Dirichlet distributions
are their natural priors. Let η = (ηs)s, λsp = (λspLpR)pL,pR , and
νsr = (νsrrL)rL denote the Dirichlet parameters for φ = (φs)s,
θsp = (θsppLpR)pL,pR , and ρsr = (ρsrrL)rL , respectively. Then
the prior distributions are given as PDir(φ|η) and similarly for θsp
and ρsr , where PDir denotes the Dirichlet distribution.

3. INFERENCE ALGORITHMS FOR PGTTM

Basic inference algorithms for PCFG have been well-developed.
With some modifications, we can derive inference algorithms for the
PGTTM. This section summarises the results.

3.1. CYK-Viterbi, inside, and outside algorithms

Given a musical passageW = (pn, rn)Nn=1, the most probable time-
span tree can be obtained with the CYK-Viterbi algorithm, which is
a dynamic programming. We will use the notation Wn = (pn, rn),
Wm
n = Wn · · ·Wm, and rmn = rn + · · · + rm. We introduce a

variable γnmp = maxT P (T) for 1 ≤ n ≤ m ≤ N and p ∈
Ωp where T denotes a time-span tree with parent (p, rmn) and yield
Wm
n (we express this as (p, rmn)

T
=⇒ Wm

n). This can be calculated
recursively as

γn(n+`)p = max
k,s,pL,pR

{
P
(
(p, rn+`

n)→ s(pL, rn+k−1
n)(pR, rn+`

n+k)
)

· γn(n+k−1)pLγ(n+k)(n+`)pR

}
(4)

for all p ∈ Ωp with the initial values γnnp = δp,Wn (δ denotes Kro-
necker’s delta). Then the probability of the most probable time-span
tree is given as γ1NS . In the calculation of Eq. (4), the arguments
that yield the maximal probability are also memorised as k̂n(n+`)p,
ŝn(n+`)p, etc. Once all γnmp have been computed, we can obtain
the most probable time-span tree by expanding the tree according to
these arguments starting from (S, rN1), as in the back-tracking pro-
cedure of the Viterbi algorithm for hidden Markov model.

To learn parameters of the PGTTM, we calculate the inside vari-
ables βnmp(W) and outside variables αnmp(W) defined as

βnmp(W) =
∑

T :(p,rmn)
T
=⇒Wm

n

P (T), (5)

αnmp(W) =
∑

T :(S,rN1)
T
=⇒Wn−1

1 (p,rmn)WN
m+1

P (T). (6)

If the dependency on W is self-evident, we simplify the notation as
βnmp and αnmp. These quantities can also be computed by dynamic
programming algorithms called the inside and outside algorithms.
For PGTTM, the inside algorithm has an update equation same as
Eq. (4) except with the maximisation maxk,s,pL,pR replaced by
a summation

∑
k,s,pL,pR . The outside algorithm is based on the

following recursive equation:

αnmp =
∑

s,q,pR,k

P
(
(q, rkn)→ s(p, rmn)(pR, r

k
m+1)

)
αnkqβ(m+1)kpR

+
∑

s,q,pL,k

P
(
(q, rmk)→ s(pL, r

n−1
k)(p, rmn)

)
αkmqβk(n−1)pL (7)

with initial values α1NS = 1 and α1Np = 0 (p 6= S). In practice
the left-hand side of Eq. (7) can be computed more efficiently by
applying the constraints explained below Eq. (2).

3.2. EM algorithm for maximal-likelihood estimation

Given a set of (unlabelled) data W , the probability parameters
can be estimated by the maximal-likelihood principle: Θ̂ =
argmaxΘP (W |Θ). The expectation-maximisation (EM) algorithm
can be derived by the following iterative minimisation [23]:

Θnew = argmax
Θ

Q(Θ,Θold)

= argmax
Θ

∑
T

P (T |W,Θold)lnP (T,W |Θ). (8)

By differentiating Q(Θ,Θold) with respect to φs, θsppLpR , and
ρsrrL , the following updating equations are derived:

φnew
s =

1

Gφ

∑
p,pL,pR,r,rL

C
(
(p, r)→ s(pL, pR, rL); Θold),

θnew
sppLpR =

1

Gθsp

∑
r,rL

C
(
(p, r)→ s(pL, pR, rL); Θold),

ρnew
srrL =

1

Gρsr

∑
p,pL,pR

C
(
(p, r)→ s(pL, pR, rL); Θold)

where G’s are normalisation constants and we have defined

C
(
(p, r)→ s(pL, pR, rL); Θold)
=
∑
T∈TW

P (T |Θold)c((p, r)→ s(pL, pR, rL);T)

P (W |Θold)
. (9)

(TW denotes the set of all possible time-span trees ofW .) The quan-
tity in Eq. (9) is given as

φold
s θold

sppLpRρ
old
srrL

N∑
n=1

N∑
m=n+1

m−1∑
k=n

δrmn ,rδrkn,rLδr
m
k+1

,r−rL

· αold
nmp(W)βold

nkpL(W)βold
(k+1)mpR

(W) (10)

where βold (αold) is the inside (outside) variable calculated with
Θold. The case for production rules with parent (S, rS) is similar.

3.3. Bayesian inference algorithm using Gibbs sampling

Given data W and hyperparameters Λ = (η,λsp,νsr), the goal
of the Bayesian learning is to estimate the posterior distribution of
the model parameters P (Θ|W,Λ), which generally cannot be solved
analytically. Fortunately we can develop a Monte-Carlo method to
draw samples from P (T,Θ|W,Λ) (T is a time-span tree) via the
Gibbs sampling [14].

The Gibbs sampling method is based on alternating samplings
of the probabilities P (Θ|T,W,Λ) and P (T |Θ,W,Λ). The former
probability can be written as a product of Dirichlet distributions as
P (φ|T,W,Λ) = PDir(φ|η + f(T)) where

fs(T) =
∑

p,pL,pR,r,rL

c
(
(p, r)→ s(pL, pR, rL);T

)
(11)

and similarly for λsp and ηsr . Therefore Θ can be sampled from
P (Θ|T,W,Λ) by sampling from the Dirichlet distributions.

Next, given a set of sampled parameters Θ, a time-span tree T
can be sampled from P (T |Θ,W,Λ) = P (T |Θ,W) by the fol-
lowing recursive sampling for each node. Each node is indicated
as a triplet (n,m, p) (1 ≤ n ≤ m ≤ N , p ∈ Ωp) meaning
that the symbol p spans the time span rmn . Starting from the top
node (1, N, S), if there is a node (n,m, p) with n<m, it is ex-
panded by sampling s, k, pL, pR from the distribution P

(
(p, rmn)→

Table 1. Accuracies of time-span tree analyses.
Learning condition Accuracy (%)
Supervised (open) 44.1
Supervised (closed) 44.9
Unsupervised (EM) 32.3
Unsupervised (Gibbs) 31.4
ATTA 44
σGTTM III 76

Table 2. Results of error analysis.
Height # nodes Accuracy (%) Children matched (%)

1 4237 60.8 80.4
2 2548 43.6 52.7
3 1578 35.0 45.8
4 998 22.8 35.6
5 606 13.2 21.9
6 358 3.9 8.9

7≥ 253 3.6 9.1

s(pL, r
k−1
n)(pR, r

m
k)|Θ,W

)
, which is given as

φsθsppLpRρs(rmn)(rk−1
n)

βn(k−1)pLβkmpR
βnmp

(12)

where β’s are the inside variables calculated with Θ.

4. EVALUATION
4.1. Evaluation setup

To test PGTTM, we implemented a time-span tree analyser based
on the CYK-Viterbi algorithm and evaluated the analyser with a
database of manually labelled time-span trees. The database con-
sisted of 300 musical passages with time-span trees analysed by a
music expert [9].

To test its ability to learn the parameters, we evaluated the
PGTTM in different learning conditions. The first two conditions
were supervised learning, one the open condition (piece-wise cross
validation) in which the training data did not include the test data
and the other the closed condition in which the test data was also
used for learning. To avoid zero frequencies, we uniformly added
a 0.1 count for all frequencies. The next conditions were unsu-
pervised learning, one based on the EM algorithm (Sec. 3.2) and
the other based on the Gibbs sampling method (Sec. 3.3). For the
EM algorithm, the initial parameter values were randomly chosen.
For the Gibbs sampling method, all hyperparameters were set as
0.1 and after sampling, the parameter set that yielded the maximal
likelihood was chosen and applied EM iterations before it was used
for the time-span tree analysis.

An estimated time-span tree was compared with the reference in
the database and the accuracy was calculated in the following way.
First a node of an estimated time-span tree was defined as matched
if it had a corresponding node with the same parent and the same
children in the reference tree. Then the accuracy was defined as the
ratio of the number of matched nodes to the total number of nodes.

4.2. Evaluation results and error analysis

The results in Table 1 show that the accuracies for the PGTTM were
nearly equal to that for ATTA. For reference, the accuracy is also
shown for σGTTM III, which uses the true group boundary of notes
in the annotated data and thus cannot be fairly compared to the other
algorithms. The fact that the open and closed tests for supervised
learning had nearly equal accuracies indicates that there was little
data sparseness and the accuracy would not improve much with a
larger data size. The EM algorithm and the Gibbs sampling had
similar accuracies that are lower than the case of supervised learning.

& 42 œ# œ œ jœ ‰

& 42 œ# œ œ jœ ‰

Estimated

Manually annotated

Incorrect branches

Fig. 2. Example result of time-span tree analysis; an estimated time-
span tree (top) and the correct time-span tree (bottom). Incorrectly
estimated branches are indicated with red broken lines.

A detailed analysis of accuracies are listed in Table 2 where
nodes are classified according to the height, which is defined as the
maximal distance from descendant leaves, and the individual accura-
cies are shown. Because we had similar results, we indicate only the
case for the open supervised learning. In the table, the proportion of
nodes that has a corresponding node with the same children but not
necessarily with the same parent in the reference tree is also shown.
The discrepancy between this value and the accuracy indicates the
proportion of nodes whose parent was incorrectly estimated. There
is a clear tendency that the nodes with lower height have higher ac-
curacies. This can also be confirmed in an example of estimated
time-span trees in Fig. 2. The example illustrates the typical case
where the cadential note is not correctly selected as the most impor-
tant note of the passage. Such misidentification of the most impor-
tant note causes cascading errors in the estimated time-span tree.

4.3. Discussion

It is encouraging that the PGTTM worked as accurately as ATTA
without elaborate manual tuning of parameters. However the results
also suggest refinements of the model are necessary to improve the
accuracy. First, as is the case with NLP, the production rule probabil-
ities depend rather strongly on the context, and it would be important
to incorporate dependence between several notes in successions into
the model [16]. Another important issue is the chose of symbols
in the grammar. Since we have not essentially used non-terminals,
the production rules of PGTTM are the same for all positions and
heights in the time-span tree. The fact that notes with higher met-
rical weight are often more important in the lower-height nodes but
the clauses are often on weak beats suggests that we need to extend
the model with latent symbols, which would improve the time-span
tree analysis for nodes with higher heights. Symbol refinement used
for NLP [19, 24] can be an aid for this extension.

5. CONCLUSION

Based on GTTM, we have constructed a probabilistic tree structure
model of written music. We formulated the PGTTM based on an
extension of PCFG, for which both supervised and unsupervised
learning techniques can be applied. Despite the conceptually simple
construction of the model, the PGTTM produced musical syntactic
parsing as accurately as the previously proposed method with elabo-
rate manual tuning of parameters. The results suggest further refine-
ments of the grammatical model. For future work, we plan to apply
the model for music transcription and automatic music arrangement
and extend the model for polyphony.

6. REFERENCES

[1] A. Klapuri and M. Davy (eds.), Signal Processing Methods for
Music Transcription, New York: Springer, 2006.

[2] N. Chomsky, Syntactic Structures, Mouton & Co., 1957.

[3] F. Lerdahl and R. Jackendoff, A Generative Theory of Tonal
Music, MIT Press, Cambridge, 1983.

[4] F. Salzer and C. Schachter, Counterpoint in Composition,
Columbia University Press, 1969.

[5] S. Kostka, D. Payne and B. Almén, Tonal harmony (7th ed.),
McGraw-Hill, New York, 2004.

[6] A. Cadwallader and D. Gagné, Analysis of Tonal Music: A
Schenkerian Approach (3rd ed.), Oxford University Press,
2011.

[7] M. Hamanaka, K. Hirata and S. Tojo, “Implementing ‘A Gen-
erative Theory of Tonal Music’,” Journal of New Music Re-
search, vol. 35 no. 4, pp. 249–277, 2006.

[8] Y. Miura, M. Hamanaka, K. Hirata and S. Tojo, “Use of De-
cision Tree to Detect GTTM Group Boundaries,” Proc. ICMC,
pp. 125–128, 2009.

[9] M. Hamanaka, K. Hirata and S. Tojo, “Music Structural Anal-
ysis Database based on GTTM,” Proc. ISMIR, pp. 325–330,
2014.

[10] M. Hamanaka, K. Hirata and S. Tojo, “σGTTM III: Learn-
ing Based Time-Span Tree Generator Based on PCFG,”
Proc. CMMR, pp. 303–317, 2015.

[11] D. Temperley, “A Unified Probabilistic Model for Polyphonic
Music Analysis,” Journal of New Music Research, vol. 38
no. 1, pp. 3–18, 2009.

[12] A. Marsden, “Schenkerian Analysis by Computer: A Proof
of Concept,” Journal of New Music Research, vol. 39 no. 3,
pp. 269–289, 2010.

[13] E. Nakamura and S. Sagayama, “Automatic Piano Reduc-
tion from Ensemble Scores Based on Merged-Output Hidden
Markov Model,” Proc. ICMC, pp. 298–305, 2015.

[14] M. Johnson, T. Griffiths and S. Goldwater, “Bayesian Infer-
ence for PCFGs via Markov Chain Monte Carlo,” Proc. HLT-
NAACL, pp. 139–146, 2007.

[15] M. Post and D. Gildea, “Bayesian Learning of a Tree Substitu-
tion Grammar,” Proc. ACL-IJCNLP, pp. 45–48, 2009.

[16] T. Cohn, P. Blunsom and S. Goldwater, “Inducing Tree-
Substitution Grammars,” Journal of Machine Learning Re-
search, vol. 11, pp. 3053–3096, 2010.

[17] H. Shindo, Y. Miyao, A. Fujino and M. Nagata, “Bayesian
Symbol-Refined Tree Substitution Grammars for Syntactic
Parsing,” Proc. ACL, pp. 440–448, 2012.

[18] C. Manning and H. Schütze, Foundations of Statistical Natural
Language Processing, MIT Press, Cambridge, 1999.

[19] M. Johnson, “PCFG Models of Linguistic Tree Representa-
tions,” Computational Linguistics, 24, pp. 613–632, 1998.

[20] M. Nakano, Y. Ohishi, H. Kameoka, R. Mukai and K. Kashino,
“Bayesian Nonparametric Music Parser,” Proc. ICASSP,
pp. 461–464, 2012.

[21] W. Granroth and M. Steedman, “Statistical Parsing for Har-
monic Analysis of Jazz Chord Sequences,” Proc. ICMC,
pp. 478–485, 2012.

[22] D. Temperley, Music and Probability, MIT Press, 2006.

[23] R. Neal and G. Hinton, “A view of the EM algorithm that jus-
tifies incremental, sparse, and other variants,” in Learning in
Graphical Models, Springer Netherlands, pp. 355–368, 1998.

[24] T. Matsuzaki, Y. Miyao and J. Tsujii, “Probabilistic CFG with
Latent Annotations,” Proc. ACL, pp. 75–82, 2005.

