
  

  

Abstract— We propose a system for detecting the surface 

conditions of a landing space using ultrasonic sensors mounted 

on a drone. The advantage of ultrasonic sensors is that they are 

extremely low cost, are much lighter and smaller than cameras, 

have millimeter-wave lasers, and use LiDAR. However, normal 

ultrasonic sensors can only measure the distance from the 

nearest object, so the amount of information is insufficient to 

estimate the conditions of a landing space. Therefore, we 

propose installing an ultrasonic sensor on each arm of the drone 

and estimating the condition of the landing space from the time 

series of reflected waves for very short ultrasonic waves. In the 

measurement results, reflected waves were small and changed 

irregularly for each sensor where a space was not suitable for 

landing. In a simulation experiment using deep learning, our 

system was able to determine whether a condition was suitable 

for landing with an accuracy of 98%. 

I. INTRODUCTION 

We propose a system for small lightweight drones to land 
safely at unknown locations. Some drones have a ‘go home’ 
feature that automatically returns them to their take-off 
positions if they lose communication with the base station or 
receive a return signal. However, drones often crash due to 
running out of battery while returning. Additionally, when 
returning, they return in a straight line instead of the route they 
flew, so if there is an obstacle along the return flight path, they 
will crash into it (Fig. 1). In some cases, the risk of a crash can 
be reduced by having the drone land as soon as possible rather 
than return to the take-off position. 

Small lightweight drones are easily unbalanced by the 
wind and can crash when landing. For example, in an area of 
thick vegetation, leaves can easily wind around a propeller just 
before the drone lands. In addition, if the landing space is 
rocky, the drone may come into contact with the rocks during 
landing and lose balance. 

Systems using a QR code or marker have been proposed 
for landing drones safely [1–3]. However, such systems 
assume a flat landing space. Therefore, if the drone is swept 
away by the wind or an abnormal event occurs that 
necessitates an emergency landing, the drone needs to evaluate 
the surface conditions of the landing space. 

Systems for preventing collisions have been proposed, 
including those using Visual Simultaneous Localization and 
Mapping (SLAM) [4, 5], range-finding sensors [6], light 
detection and ranging (LiDAR) [7, 8], and stereo cameras [9, 
10]. Although these systems are mainly used for detecting 
obstacles in the direction of drone movement, they may be 
able to evaluate the surface conditions of the landing space by 

 
 

 

Figure 1.  Example of drone crashing while returning home 

determining the sensor-installation direction. In a system that 
estimates the position from the ground surface shape, however, 
the LiDAR sensor is mounted pointing downward, enabling it 
to sense the landing space [11]. However, LiDAR adds a large 
payload to these systems, so they are difficult to apply to small 
lightweight drones. 
   A lightweight automatic landing system has been achieved 
by image processing using four laser pointers and a camera 
[12]. However, it estimates aircraft altitude under the 
assumption that the landing surface is flat. Additionally, this 
landing system has difficulty finding obstacles with laser 
pointers because the laser pointers are pointed straightly and 
so cannot find obstacles that are not directly in front. In 
contrast, ultrasonic sensors cover a wider area than laser 
pointers and can receive the reflected waves, so they are 
suitable for examining the safety of the landing area. 

Therefore, we use ultrasonic sensors to determine whether 
the intended landing space is suitable. Their main advantages 
are that they are small, lightweight, and low cost. However, a 
conventional ultrasonic sensor can measure only the distance 
to the nearest object, and this information is insufficient to 
estimate the surface conditions of a landing space [13, 14]. 

Therefore, we propose a system that has the following four 
features. 

• Short ultrasonic pulses  
We have made it possible to detect both obstacles and 
the ground by making the pulse emitted from an 
ultrasound sensor extremely short. There is a method 
for recognizing multiple objects with one ultrasonic 
pulse, but a high-voltage pulse of 720 V must be 
generated so that the reflected wave increases quickly 
[15]. Such high voltages are difficult for drones to 
generate. Although there is a method that enables 
multiple objects to be recognized by using a single 
sine wave of 5 V, fast Fourier transform needs to be 
carried out on the host computer, and processing on a 
small drone is difficult [16]. 
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• Improvement in voltage increase through reflected-
wave integration 
In our system, ultrasound transmission units emit two 
ultrasonic pulses of 5 V. Since the received reflected 
waves are very small, they are amplified and 
integrated by using an operational amplifier so that a 
peak appears. Thus, the object can be visually 
recognized from this peak. 

• Ultrasonic receiving unit for each arm 
By installing an ultrasonic receiving unit on each arm 
of the drone and observing differences in the peaks of 
the acquired reflected waves, the flatness of the 
landing point can be determined. 

• Suitability identification by deep learning 
By using deep learning, it is possible to automatically 
identify whether a space is suitable for drone landing 
[17, 18]. The significance of using deep learning for 
determining suitability for landing is twofold: robust 
identification and reduced size and weight. For the 
former, suitable landing spaces can be robustly 
identified by accumulating data on successful and 
unsuccessful landings. For the latter, by carrying out 
deep learning on a single-chip field-programmable 
gate array, even a small lightweight drone can evaluate 
the landing space through autonomous flight [19]. 

We conducted experiments to evaluate our system and 
found that the reflected waves were small and changed 
irregularly for each sensor in spaces unsuitable for landing. 
Using deep learning, we could determine whether a space is 
suitable for drone landing with 98% accuracy. We explain how 
our system evaluates the surface conditions of the landing 
space using ultrasonic sensors in Section II and describe the 
implementations of the hardware and software in Sections III 
and IV, respectively. In Section V, we present and discuss the 
experimental results. In Section VI, we investigate the 
application of deep learning to the proposed system. We 
conclude with a brief summary and mention future plans in 
Section VII. 

II. EVALUATING SURFACE CONDITIONS OF LANDING SPACE 

USING ULTRASONIC WAVES 

A drone with our system can autonomously evaluate the 
suitability of a landing space before landing. A drone requires 
automatic landing when communication between the base 
station and the drone is interrupted or when a landing signal is 
transmitted from the base station to the drone. 

First, the drone slowly descends while sensing with the 
ultrasonic sensors mounted underneath it. Since the measuring 
distance of the ultrasonic sensors is up to 5 m, when the 
distance from the ground surface or an obstacle becomes less 
than 5 m, the our system starts to evaluate surface conditions. 
If the landing space is determined to be suitable, the drone will 
continue sensing and descending and then land. If the landing 
space is not suitable, it will try landing somewhere else when 
returning to the take-off position. 

The drone is always moving while hovering; therefore, if 
its position and altitude are accurately known, a point cloud of 
the landing space can in principle be created by mapping the 
distance indicated by the ultrasonic sensors in a three-
dimensional (3D) space (Fig. 2). 

 

Figure 2.  Point cloud from ultrasonic sensors on drone 

A.  Lack of GPS Accuracy 

Since global positioning system (GPS) has an error of 
about 2 m, 3D shapes cannot be superimposed when creating 
a point cloud. By using real-time kinematic (RTK)-GPS [20], 
the accuracy will be within several centimeters and a point 
cloud can be created, but RTK-GPS is difficult to mount on a 
small lightweight drone.  

Therefore, we do not create a point cloud but determine 
whether the surface conditions are suitable for landing. For 
conditions in which landing is not possible, it is not worth 
creating a precise point cloud. 

B. Directivity of Ultrasonic Sensor 

Ultrasonic waves are emitted in a beam form with a certain 
spread from the transducer. The spread is about 20 to 30 
degrees; therefore, an ultrasonic sensor does not have pinpoint 
directivity, unlike radar. An ultrasonic sensor also has 
difficulty covering a wide area, unlike LiDAR.  

Therefore, with our system, ultrasonic sensors are mounted 
on each arm of a drone, and reflected waves are compared to 
find obstacles during landing. If the distances indicated by 
each ultrasonic sensor are the same, the landing site is 
estimated to be flat. However, if are distances are indicated to 
be different, the landing space is estimated to contain an 
obstacle (Fig. 3).  

 

Figure 3.  Obstacle detection with multiple ultrasonic sensors 

C. Temporal Change 

A conventional ultrasonic distance sensor captures the 
shortest reflected wave. For example, Distance A will be 
detected when using such a sensor on a stepped wall, as shown 
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in Fig. 4. Drones are constantly moving under the influence of 
the wind. In addition, vegetation and thin branches move with 
the wind generated by the drone. Therefore, in spaces 
containing vegetation or trees, the detection distance 
significantly changes due to wind. Therefore, the surface 
conditions of a landing space can be evaluated by distributing 
reflected waves. 

 

 

Figure 4.  Detection distance of ultrasonic sensor on stepped wall  

D. Distribution of Ultrasonic Reflected Waves 

Figure 5 shows the difference between a system using 
conventional ultrasonic distance sensors and our system. A 
conventional ultrasonic distance sensor outputs a pulse of a 
certain length by using a transducer. The distance is then 
calculated by measuring the time until the reflected wave 
returns. 
With our system, however, an ultrasonic sensor outputs only 
two pulses from the transducer. The pulses are then reflected 
back to various spaces and return. The reflection becomes an 
analog signal because the reflected waves are integrated. No 
special circuit is used for integration, the reflected waves 
overlap, and the signal strength increases. 

If there is an obstacle on the ground, a conventional 
ultrasonic distance sensor can only determine the distance to 
the obstacle. However, with our system, there are two peaks: 
one corresponds to the distance to the obstacle, and the other 
corresponds to the distance to the ground. In fact, the 
distribution becomes more complicated than that in Fig. 5, and 
we can determine the surface conditions. 

 

Figure 5.  Comparison of system using conventional ultrasonic distance 

sensors and our system 

III. HARDWARE IMPLEMENTATION 

Figure 6 shows a prototype of our system for measuring 
surface conditions using ultrasonic waves. We constructed a 
quadcopter drone with an aluminum frame. Each transducer 
was mounted at the tip of the arm, and the receivers were 
mounted underneath the body. 

Figure 7 shows the configuration of the system. First, 
every 50 ms, the central processing unit (CPU) outputs two 
pulses of 40 KHz at a transistor-transistor logic (TTL) level of 
5 V. Then, the pulses are amplified by an amplifier and output 
from the ultrasonic transmission unit. As the two transmitted 
pulses are reflected from various objects, their signal strength 
changes over time. The time series of the signal strength 
obtained with the ultrasonic receiving units is amplified and 
integrated by the operational amplifiers, rectified by a diode, 
and then converted into an analog volume change. Analog 
volume changes are analog-to-digital converted by the CPU 
and stored in memory. The signal strength is stored at 1 byte 
per centimeter up to 5 m. Since 2000 bytes are required to store 
all four channels of reflective-waves, we use PICK18F26K22 
as the CPU because it has sufficient memory. The four-
channel distribution data are output via the RS-422 protocol 
and sent to a personal computer via a level conversion 
integrated circuit (IC) and serial-USB conversion IC. 

 
 

 

Figure 6.  Prototype of proposed system 

 

IV. SOFTWARE IMPLEMENTATION 

We built Java software to display the distribution of 
reflected ultrasound signals, as shown in Fig 8. The horizontal 
axis of the graph is distance, from 0 to 500 cm. It is also 
possible to zoom in from 0 to 200 cm. The horizontal axis of 
the graph is the signal strength. The distribution graph is 
updated in real time. If the update is too fast, the visibility will 
be low, so the refresh rate can be selected from five options: 
50, 100, 250, 500, and 1000 ms. A dip switch for switching the 
refresh rate is connected to the CPU on the hardware. 
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Figure 7.  Overview of the system 

Figure 8.  Display of distribution of reflected ultrasound signals with 

proposed system 

V. EXPERIMENTAL RESULTS 

We divided surface conditions of the landing space into 
three types (suitable for landing, not suitable for landing, and 
dangerous for landing) and measured the distribution of 
ultrasonic reflected signals at multiple points. 

A. Suitable for Landing 

The distribution of the reflected signals of the ultrasonic 
waves was measured on a wooden deck without a concrete 
slab. The drone hovered more than 1 m above the deck (Fig. 
9). Figure 10 shows the reflected-signal distribution at that 
time, in which the peak was around 100 cm for all four 
channels, but the signal intensity significantly differed for each 

channel. When a wooden board was placed on the deck, the 
signal strengths of all four channels were almost the same (Fig. 
11). Ultrasonic waves went into the gaps in the wooden deck, 
causing a drop in reflectivity. 

    

Figure 9.  Wooden deck (left) and with board placed on top (right) 

 

Figure 10.  Reflected-signal distribution for wooden deck 
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Figure 11.  Results on wooden deck with wooden board 

Hovering the drone 1 m above the concrete slab and 
placing a wooden board on the slab provided almost the same 
reflected-signal distribution as that in Fig. 11. When the 
wooden board was removed, the peak was near 1 m, as shown 
in Fig. 12, but there was a difference in the peak height. 
Because the concrete was rough due to aging, the ultrasonic 
waves were irregularly reflected, and the reflected waves were 
weakened. The measurement was also carried out when the 
drone hovered at 0.5 m (Fig. 13) and 1.7 m (Fig. 14). At 0.5 m, 
three-order reflected waves, i.e., waves reflected by the drone 
and those by the concrete slab, also appeared. At 1.7 m, the 
shape of the waveform resembled 1 m, but the signal strength 
was greatly attenuated. One characteristic of a space suitable 
for landing, such as a wooden deck or concrete slab, is that the 
reflection-intensity peaks of the four channels align. 

 

 

Figure 12.  Reflected-signal distribution for concrete slab 

 

Figure 13.  Reflected-signal distribution from 0.5 m above concrete slab 

 

 

Figure 14.  Reflected-signal distribution from 1.7 m above concrete slab 

B. Not Suitable for Landing 

We measured the reflected-signal distribution for an 
uneven space and spaces with sparse and thick vegetation, 
which are not suitable for landing. The uneven space was 
where animals (wild boars) had dug in search of food (Fig. 15) 
and presented a risk of the drone crashing during landing.  

The space with sparse vegetation was covered with 
vegetation of about 35 cm in height, and the space with thick 
vegetation was on a 40-degree slope and covered with 
vegetation of about 50 cm in height (Fig. 15). The drone risks 
crashing when leaves become caught in its rotor. 

Figures 16 and 17 show the results of the drone hovering 1 
and 1.7 m above the uneven space, respectively. Since the 
ultrasonic waves were absorbed and diffused, the reflection 
intensity was very low but detectable. 

 

       

Figure 15.  Uneven space (left), space with sparse vegetation (center), and 

space with thick vegetation (left) 

 

Figure 16.  Reflected-signal distribution from 1.0 m above uneven space  
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Figure 17.  Reflected-signal distribution from 1.7 m above uneven space 

Figure 18 shows the reflected-signal distribution when the 
drone hovered 1 m above the space with sparse vegetation. The 
reflection intensity varied depending on the leaf density and 
the direction of the leaf surface, but approximate flatness was 
determined. 

Figure 19 shows the reflected-signal distribution when the 
drone hovered 1 m above the space with thick vegetation. 
Although the signal strength from the receivers toward the top 
of the slope had a sharp peak, the signal strength from the 
receivers toward the bottom had a gentle peak. A feature of 
surface conditions not suitable for landing, such as unevenness 
and vegetation, is that the reflection intensity of the four 
channels varies irregularly. 

 

 

Figure 18.  Reflected-signal distribution from 1.0 m above space with sparse 

vegetation  

 

Figure 19.  Reflected-signal distribution 1.0 m above space with thick 

vegetation 

C. Dangerous for Landing 

We measured the reflected-signal distribution where there 
was a stone and rock. In such spaces, the propellers, legs, or 
arms risk coming into contact with the stones and rocks, 
causing the drone to lose its balance and crash. 

The stone was about 15 cm high, and the drone hovered 1 
m above the ground. Figure 21 shows the reflected-signal 
distribution just above the stone. Although the space around 
the stone had sparse vegetation and was possible to land in, it 
was difficult to distinguish between the stone and vegetation 
due to the large amount of ultrasound diffusion and low 
reflection intensity (Fig. 21a). However, when viewed in 
chronological order, peaks were occasionally generated 
around 80 cm, so stones can possibly be identified by looking 
at the temporal change (Fig. 21b). 

The rock was about 70 cm tall, and the drone hovered 1 m 
above the ground and thus 30 cm above the rock. Figure 22 
shows the reflected-signal distribution, with a peak around 30 
cm and the rock being recognized. There was also a peak near 
1 m, and the ground was also recognized. 

     

Figure 20.  Stone (left) and rock (right) 

(a) Difficult to distinguish between stone and vegetation 

 
 (b) Small peak at 60 cm 

 

Figure 21.  Reflected-signal distribution for stone and drone hovering at 1.0 m 
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 (a) Big peak at 100 cm 

 

 

(b) Small peak at 100 cm 

 

Figure 22.  Reflected-signal distribution for rock and drone hovering at 1.0 m 

VI. PROPOSED SYSTEM USING DEEP LEARNING 

 A simulation experiment was conducted to determine 
whether a space’s suitability for landing can be estimated by 
using deep learning. 

A. Determining Surface Conditions for Landing 

 When the following surface conditions are satisfied, a space 
is determined to be suitable for landing. 

• Flatness of landing space 
Except in a space where there are many irregular 
reflections of ultrasonic waves, such as uneven land, a 
maximum peak occurs at the position of the ground. If 
the four maximum peaks are almost at the same 
position (within 3 cm), the landing space is 
determined to be flat. 

• No obstacles 
Obstacles such as stones and rocks are difficult to 
recognize, as shown in Figs. 20 and 21. Therefore, any 
reflection at a distance shorter than the four maximum 
peaks is regarded as an obstacle. 

B. Data Augmentation 

 The data acquired thus far using the drone are limited. Also, 
carrying out many measurements is costly. Therefore, the 
learning data is augmented by using the following data. 

• Creating basic reflected waves 
All collected reflected waves, as mentioned in Section 
V, are divided into basic reflected waves. A basic 
reflected wave is obtained by deleting a portion where 
the value of the original reflected wave is 0 and 
dividing the distribution into several distributions. 
Fifty basic reflected waves were extracted. 

• Superposition of the basic reflected waves 
Reflected waves are artificially generated by shifting 
the positions of the basic reflected waves and 
superimposing them. An artificial reflected wave has 
a vertical axis from 0 to 255 cm and a horizontal axis 
from 0 to 500 cm. The number of superimposed basic 
reflected waves is randomly determined between one 
and five. The shift in the distance direction is 
randomly determined between -250 and +250 cm, but 
excludes the cases in which a part of the fundamental 
reflected wave is 0 or less or the entire fundamental 
reflected wave exceeds 500 cm. The size of the 
fundamental reflected wave varies randomly in 0.1 
steps from 0.1 to 3 times. If the vertical axis exceeds 
255 as a result of the superposition, it is excluded. 

• Determine the generated reflected wave 
By using the method described in VI A, the generated 
reflected waves are determined as suitable or not for 
landing and labeled. We generated one million 
reflected waves suitable for landing and one million 
reflected waves not suitable for landing. 

C. Learning and Evaluating by Deep Learning 

 We used a multi-layer perceptron (MLP) for learning the 
relationship between the generated reflected waves and the 
label. The input layer was a 2000-dimensional layer, i.e., 500-
dimensional reflected wave from each of the four sensors. 
There were four intermediate layers, each having 1,000 units 
of perceptron (Fig. 23). We used 90% of the data as learning 
data and 10% as evaluation data. The accuracy of the data was 
0.98; most of the incorrect data were when the maximum 
peaks of the four distributions were slightly longer than 3 cm. 

 

Figure 23.  MLP for estimating surface conditions of landing space 

VII. CONCLUSION 

We proposed a system to evaluate the surface conditions of 

a space for a drone to land using ultrasonic sensors attached 

to each arm of the drone. The ultrasonic transmitting unit 

outputs two pulses of ultrasonic waves, and the receiving unit 
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receives the reflected waves. By integrating the received 

waves by using an operational amplifier and rectifying them 

by using a diode, a circuit is created that causes a peak at an 

object or on the ground. 

The results indicate that, in spaces suitable for landing, the 

four peaks were all in the same place and that the surface 

flatness could be evaluated. In spaces not suitable for landing, 

the signals from the four sensors had irregular movements. In 

spaces dangerous for landing, there was another peak besides 

the ground. From results of a simulation experiment, our 

system could determine whether a space was suitable for 

landing with an accuracy of 0.98 by using deep learning. 

We plan to construct an emergency landing system for a 

small lightweight drone [to use for detailed evaluations 

outdoors.  
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