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Abstract— We propose a method to improve the resolution
of drone position and direction estimation on the basis of deep
learning using three-dimensional (3D) topographic maps in non-
global positioning system (GPS) environments. GPS is typically
used to estimate the position of drones flying outdoors. However,
it becomes difficult to estimate the position if the signal from
GPS satellites is blocked by tall mountains or buildings, or if
there are interference signals. To avoid this loss of GPS, we
previously developed a learning-based flight area estimation
method using 3D topographic maps. With this method, the
flight area could be estimated with an accuracy of 98.4% in
experiments conducted in 25 areas, each 40 meters square.
However, a resolution of 40 meters square is difficult to use for
drone control. Therefore, in this study, we will verify whether
it is possible to improve the resolution by multiplexing the area
division and the data acquisition direction. We also investigated
whether the flight direction of the drone can be detected using a
3D map. Experimental results show that the position estimation
was 96.8% accurate at a resolution of 25 meters square, and
the direction estimation was 92.6% accurate for 12-direction
estimation.

I. INTRODUCTION

Our goal is to use drones for delivery in mountainous
areas. Drones require a lot of energy to climb, so in the
mountains, it is more energy efficient to fly them in the
valleys rather than along the peaks. When flying in a valley,
signals from global positioning system (GPS) satellites can
become blocked, which reduces navigational accuracy and
makes flight difficult. Furthermore, GPS signals are very
weak and subject to a variety of disturbances in general, and
such problems increase the chances of a crash when flying
a GPS-controlled drone [1], [2].

Assisted-GPS (A-GPS) [3], [4] and quasi-zenith satellite
systems (QZSS) [5] are two approaches that have aimed to
solve these problems. A-GPS augments regular GPS with cell
tower data and Wi-Fi positioning to enhance the quality and
precision when operating in poor satellite signal conditions.
However, there are no cell towers or Wi-Fi on mountainsides
or high up in the air. As for QZSS, while it provides highly
precise and stable positioning services that are compatible
with GPS, the services are only available in the Asia-Oceania
region. Moreover, QZSS cannot be used if there are jamming
waves, as is often the case with GPS.

As a drone technology in a non-GPS environment, a
method of finding an emergency landing site using SLAM
has been proposed [6]. Another method using artificial in-
telligence (AI) to determine the safety of landing sites using
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ultrasonic sensors has been proposed [7]. These assume that
the drone will move slowly when GPS signals cannot be ac-
quired [6], [7]. Our premise is that even if the GPS cannot be
captured during high-speed movement, the proposed method
will correctly estimate the position and continue high-speed
movement.

To address these non-GPS issues, we previously proposed
a method to estimate the flight area using deep learning
techniques [8] to match the ground surface vectors obtained
by a two-dimensional (2D) LiDAR [9], [10] mounted on a
drone with a three-dimensional (3D) map acquired by a land
observation satellite (Fig. 1)[11]. Although deep learning
has been used to estimate the positions of persons and
objects from camera images, at the time of writing, no such
method has been proposed for estimating the position of an
unmanned aircraft system (UAS) [12], [13].

The main advantage of our method is that we consider
terrain undulations as unique information similar to finger-
prints and solve localization as a machine-learning problem.
Our flight experiment results showed that this method could
estimate the flight area with an accuracy of 98.4%. However,
we encountered the following two problems when it came to
controlling the drone’s flight.

LiDAR

Fig. 1. Acquisition of surface vectors by LiDAR.

Low resolution: In the flight experiment, we estimated
which area was 40 meters square from the five vertical and
five horizontal areas. The resolution of 40 meters square
is insufficient when flying at a low altitude (e.g., when
landing), so it is necessary to detect the position with a
higher resolution. At this time, if the area is reduced to
increase the resolution, the learning data for each area is
also reduced, and the accuracy of area estimation by deep
learning is consequently lowered as well.

Area estimation methods based on deep learning suffer
from low estimation accuracy near area boundaries [11]
because it is difficult to learn samples that have very similar
surface vectors but different areas. When the area is sub-



divided, the average estimation accuracy decreases because
the number of samples near the area boundary increases
relatively.

Therefore, in our improved method, we do not change the
size of the area division but perform more than one esti-
mation instead. In these multiple estimations, we construct
four area estimators with different area boundaries and form
a common area by superimposing all four estimation areas,
which is then set as the final estimation area.

Compass error: Assuming that the nose of the drone is
facing north, we used the surface vectors located 25 meters
to the left and right of the drone as data for learning and
estimating the deep neural networks. However, there are
many places where compass errors occur (e.g., near power
lines), and it is difficult to always fix the nose direction to
the north. If the scanning direction of LiDAR greatly differs
from that at the time of deep learning, it becomes difficult to
estimate the area. Furthermore, to implement drone autopilot
in places where GPS is difficult to use, it is necessary to
correctly estimate the direction in addition to the position of
the drone.

At present, it is possible to estimate the direction by
generating learning data when the drone faces various di-
rections. However, a ground surface vector is similar to
a surface vector whose LiDAR acquisition direction has
slightly changed, and it is difficult to distinguish them even
by using deep learning. Similar to area estimation, it is
difficult to learn samples with similar surface vectors but
different direction information.

To sufficiently distinguish the directions in which the
drone is facing, our improved method uses a four-direction
estimator with 90-degree increments. The common direction
formed by superimposing the estimation directions of the
three estimators is the final estimated direction.

The rest of this paper is organized as follows. In Section
2, we present the learning and evaluation data and the basic
algorithm of position estimation based on the ground surface
shape. Section 3 describes the multiplexing of area divisions,
and Section 4 describes the direction estimation. We discuss
the experiments and results in Section 5 and conclude in
Section 6 with a summary and mention of future work.

II. POSITION ESTIMATION USING SURFACE
VECTOR

The flight area of a drone can be estimated by using
pattern matching between the 3D topographical map and the
ground surface shape acquired by the drone. In this case, it
is more efficient to perform pattern matching between 3D
shapes acquired using 3D LiDAR. However, 3D LiDAR is
heavy and difficult to mount on small drones. Lightweight 3D
LiDAR has also become available [14]. However, 3D LiDAR
that can be measured over long distances has a narrow
vertical field of view, and the data that can be obtained is
not much different from that of 2D LiDAR. In addition,
the sensor or mirror rotation type used in many small 3D
LiDARs has the problem that the scanning point shifts by

the distance that the drone has flown during the scanning
time when it flies at high speed.

Therefore, in this work, we equipped the drone with a
compact, lightweight 2D LiDAR that was originally devel-
oped for automated driving and used it to acquire a 2D
surface cross-section (Fig. 1).

The estimation of the flight area of a drone using deep
learning is performed in two steps. First, the 2D surface
vector is acquired by the 2D LiDAR mounted on the drone.
Next, the area is estimated from the 2D surface vector by
using a network learned in advance. In this section, we
describe the construction of the learning and evaluation data.

A 2D LiDAR (LD-MRS, SICK AG) is mounted on the
drone to acquire the ground cross-sectional shape (Fig. 2).
The altitude of the ground surface can be measured to an

Fig. 2. Matrice 600 [15] equipped with LD-MRS.

accuracy of about 20 centimeters if a LiDAR with an angular
resolution of 0.125 degrees is mounted facing vertically
downward and the UAS flies 30 meters above the ground
[16]. In our experiments, we set 100 measurement points
(one every 50 centimeters on the left and right of the flight
path) and recorded the differences in height between these
points as a 100-dimensional 2D surface vector. The height
of the drone was fixed at 30 meters from an average altitude
(Fig. 3). The method itself is capable of handling various
altitudes, enabling the area in the height direction to be
estimated simultaneously [11]. However, we chose to set the
altitude to a constant level to prevent difficulty in verifying
the basic performance of the method due to the large amount
of training data. Another reason is hardware limitations. LD-
MRS can measure up to 150 meters, but as the altitude
increases, it becomes more difficult for the laser to reach
the ground, which increases the number of points that are
difficult to measure. Thus, the altitude was set at 30 meters.

We divided the flight area into a lattice and assigned
different labels to its elements. The initial position of the
drone was randomly determined, and a set of the ground
shape vectors calculated from the 3D map and the labels of
the area were used as learning data.

We used an AW3D global high-resolution 3D map ac-
quired by Maxer (formerly DigitalGlobe) satellites [17].
Maxer’s imagery provides high-precision elevation models
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Fig. 3. 100 measurement points.

at 0.5-m to 2-m resolution.
Pattern matching between the 3D map and the ground

surface vector acquired by 2D LiDAR typically requires
numerous matchings, which makes it difficult to perform
in real time. Thus, we estimated the flight area from the
ground surface shape in real time by using a multilayer
perceptron (MLP) [18]. It is possible to use a convolutional
neural network [19] or support vector machine [20] as a
discriminator, but since real-time performance is important
for drone position detection, we decided to use the MLP,
which has a simple structure and fast processing speed.

The MLP for estimating the flight area is shown in Fig. 4.
The input for the experiment was 100 units corresponding to
the 100-dimensional ground surface vector. Each dimension
of the surface vector was normalized to zero mean and vari-
ance one. The output units of the MLP were area labels. The
MLP had n hidden layers; i.e., we varied n and the number
of units in the experiments. The input layer, intermediate
layers, and output layer were all fully connected.
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Fig. 4. MLP for estimating area labels.

Supervised learning with back-propagation was used to
determine all of the network parameters, including the bias
of the units and the weights of the connections between the
units.

III. MULTIPLE ESTIMATIONS OF DRONE
POSITION

The lattice that divides the area is shifted by a quarter
of the size of one area, and the four lattices overlap. Then,
overlaying the lattices creates a sub-area that is one-fourth
the size of the original area. For example, if we stack

four lattices with five 100-meter square areas vertically and
horizontally, we will have a 25-meter square sub-area. The
range of the identifiable sub-area is 425 meters square in
289 sub-areas (= 17 × 17), where all four lattices overlap
(Fig. 5).
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Fig. 5. Four overlapping lattices and sub-area.

When the area label is attached as shown on the left of
Fig. 6, the sub-area indicated in black on the right of Fig. 6
with lattice 1 has the area label 6, lattice 2 is labeled with
1, lattice 3 is labeled with 2, and lattice 4 is labeled with 1.
That is, the combinations of labels on the four grids in each
sub-area are all different and identifiable.

In the figure, it appears as though one area is estimated by
each of the four lattices, but in fact, the probability of being
in each of the 25 areas is calculated. Then, the probabilities
are added to estimate which sub-area is the highest.

IV. DIRECTION ESTIMATION USING SURFACE
VECTOR

It is possible to estimate the direction of the drone by
dividing the directions into twelve. However, if the 12-
direction estimator is made directly, the accuracy will be very
low because many learning and estimating data are near the
boundary. Therefore, we make three 4-direction estimators
that are offset by 30 degrees. Then, we superimpose them
and identify the overlapping part to construct the 12-direction
estimator.

There are 100 LiDAR scan points across 50 meters per-
pendicular to the drone (Fig. 7). The center point of the drone
is the center of the LiDAR scan. We rotate the LiDAR scan
around the center point of the drone with a resolution of 1
degree to create surface vectors in all directions. Labels are
added to the surface vector in accordance with the direction
of the drone.

We set three of the aforementioned four-direction estima-
tors with an angle of 30 degrees and assign a different area
label to each. At the time of estimation, the direction in
which the estimation results of the three estimators overlap
is set as the final estimation direction (Fig. 8). Similar to the
sub-area estimation, the figure appears to show that one of
the directions is estimated by all three direction estimators,
but in fact, the existence probabilities of each of the four
directions are calculated. Then, we estimate the direction in
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Fig. 6. Area label of sub-area.

which the highest probability is calculated by adding the
probabilities.

V. IMPLEMENTATION

We constructed a deep neural network by inputting a 100-
dimensional surface vector and outputting position labels for
each of the four lattices and direction labels for each of the
three estimators. The first to fifth layers are fully connected
layers, and ReLU was used as the activation function (Fig. 9).

The sixth to eighth layers are also fully connected layers
but are branched for each output, and ReLU was used as
the activation function. Softmax was used as the activation
function from the eighth layer to multiple outputs. As for the
number of units, it is known that the accuracy increases due
to avoiding overfitting when the number of units decreases
by 0.6 times from the first layer until one layer before the
output layer, so we utilized this design here as well [11].
The number of units in the first layer was set to 1800, which
was highly accurate due to random sampling.

It is possible to calculate sub-area and direction probabil-
ities from the output of the trained network shown in Fig. 9.
In addition, the network can be fine-tuned by separating the
output shown in Fig. 9 and combining the 286 sub-areas and
12 directions as outputs (Fig. 10).
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Fig. 7. Four direction labels.

VI. EXPERIMENTAL RESULTS

The network described in the previous section was learned
and the performance was then evaluated. We used an
NVIDIA RTX 4090 for learning. The experimental data is
600 meters square of a W3D global high-resolution 3D map
acquired by Maxer satellites, and its center is 139.108 east
longitude and 36.624 north latitude. Four 500-meter square
areas were taken in a 600-meter square area with a 25-
meter shift (Fig. 11). Each 500-meter square was divided into
25 and labeled. We randomly sampled 80% of all the data
from the 289 (= 17 × 17) sub-areas as training data and the
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remaining 20% was validation data. We initially used Adam
as the optimizer, but the validation accuracy decreased in the
middle of learning, so we used RMSprop instead.

Fig. 11. 3D map acquired by Maxer satellites.

A. Positon Estimation Results

After learning for 1000 epochs, the performance of 25
areas of each lattice was estimated as shown in Table I.
Figure 12 shows the learning curve of lattice 1.

TABLE I
ESTIMATION ACCURACY OF EACH LATTICE

Lattice 1 Lattice 2 Lattice 3 Lattice 4
85.6% 86.1% 86.2% 85.7%

By superimposing the four grids, 289 sub-areas were
created. When the sub-areas were estimated by adding the
probabilities that drones exist in each area, the accuracy was
67.4% at a chance rate of 1/289.

We created a heat map to clarify what kind of position es-
timation errors occurred. As shown in Fig. 11, we found that
32.6% of the data was incorrect. The blue square indicates
the estimated area, and the red square indicates the correct
area. The numbers in the heat map are the sum of the correct
answer probabilities of the four lattices, where the maximum
and minimum values are 4 and 0, respectively. Even if the
estimation was incorrect, as shown in Figs. 13(a)–(c), the
adjacent position was often inferred. However, in a number
of cases, another position was estimated, as shown in (d).
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B. Direction Estimation Results

The accuracy of each estimator for direction estimation
is listed in Table II. Figure 14 shows the learning curve of
direction estimator 1.

TABLE II
ESTIMATION ACCURACY OF EACH DIRECTION ESTIMATOR

Estimator 1 Estimator 2 Estimator 3
79.0% 78.5% 78.9%

When the directions were estimated by adding the results
of the three direction estimates, the accuracy was 59.4% at
a chance rate of 1/12.

The graph shown in Fig. 15 was created to clarify the
errors that occurred in direction estimation. We found that
40.9% of the data was incorrect. The estimated and correct
directions are shown in orange and brown, respectively.
The polar coordinate numbers are the sum of the correct
answer probabilities of the three estimators, with a maximum
and minimum value of 3 and 0, respectively. As shown in
Figs. 15(a)–(c), there were many cases where the adjacent
direction was estimated even if the estimation was incorrect.
However, in a number of cases, another direction was esti-
mated, as shown in (d).

C. Fine-Tuning Results

We improved the resolution by summing the output of four
lattice probabilities for position estimation and the outputs
of three estimators for direction estimation. In this method,
if even one of the lattices or estimators is misestimated,
the final position or direction will be wrong. Therefore, the
estimation accuracy was low compared with one lattice or
one estimator.

Even when an estimation error occurred, there were many
instances in which the estimated area was adjacent to the
correct area due to a slight difference in probability. If this
probability can be adjusted, there is a possibility that the

accuracy can be improved. Therefore, we performed fine-
tuning using the network in Fig. 10, in which 289 sub-area
units and 12 directional units with softmax functions are
combined with the trained network from the input to the
eighth layer.

After fine-tuning, the accuracy of position estimation with
the 25-meter square resolution was 96.8%, and the accuracy
of 12-direction estimation was 92.6%. Learning did not
progress when the network in the initial state was used
instead of fine-tuning.

VII. CONCLUSION

We proposed a method for estimating the position and
direction of drones by learning the ground surface vector
acquired by LiDAR with a multi-output deep neural network.
The main contributions of this paper can be summarized as
follows.

Improved resolution of area estimation: While the size
of the area to be estimated was 100 meters square, the area
estimation multiplexing made it possible to estimate a sub-
area of 25 meters square. The sub-area could be estimated
with an accuracy of 67.4% at a chance rate of 1/289. Even
for the incorrect estimation, which was 32.6%, most of the
errors were related to the adjacent sub-area.

Direction estimation: Previously, it was assumed that
the drone would always fly northward, but by learning the
surface vectors in all directions (i.e., 360 degrees), we were
able to estimate the direction of the drone. It was possible to
estimate the sub-area with an accuracy of 59.4% at a chance
rate of 1/12. Most of the incorrect answers (40.9%) were
estimation errors in adjacent directions.

Fine-tuning: After fine-tuning using a network that com-
bines 289 sub-areas, 12 directional units, and the learned
network from input to the eighth layer with softmax, the
position estimation accuracy with a resolution of 25 meters
square was 96.8%, and the 12-direction estimation accuracy
was 92.6%.

Improved resolution in estimating drone position and
orientation: Our previous deep learning-based position de-
tection method suffered from a drop in accuracy when we
attempted to improve the resolution. The experimental results
showed that multiple lattices and direction estimators can
improve resolution without a significant loss of accuracy.

Our next steps are as follows.
Further improvement in resolution: Our proposed

method can further improve the resolution by setting the shift
of the lattices and direction estimators very small. We will
verify the extent to which the resolution can be improved
without a significant drop in estimation accuracy.

Network construction corresponding to changes in
altitude: In the experiment, it was assumed that the drone
would fly at a fixed altitude of 30 meters, but in actual flight,
altitude changes occur. Therefore, we plan to divide the area
in the altitude direction and perform learning and estimation.

Learning in a large area: A problem with current
learning networks is that once the drone leaves the training
area, it loses its position. To prevent this, we need to prepare
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Fig. 14. Learning curve of direction estimator 1.

a large labeled area around the area where the flight is
planned. We are planning to evaluate the performance in a
large area.

Non-repetitive scanning 3D LiDAR: Although 2D Li-
DAR was used in the experiments in this paper, a number
of 3D LiDARs perform non-repetitive scanning [21]. They
produce a scanning pattern in which the laser resembles the

shape of a flower. We plan to enable faster estimation by
inputting one petal pattern or one curve pattern into the
network.

Field flight experiments: A trained network can estimate
position and direction in real time with a small computer.
We plan to carry out a field flight experiment by mounting
the computer on an unmanned aircraft operated by the Japan
Aerospace Exploration Agency (JAXA).
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